Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation.
View Article and Find Full Text PDFThe metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS). Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice).
View Article and Find Full Text PDFIon channels are at present the third biggest target class in drug discovery. Primary research is continually uncovering potential new ion channel targets in indications such as cancer, diabetes and respiratory diseases, as well as the more established fields of pain, cardiovascular disease, and neurological disorders. Despite the physiological significance and therapeutic relevance in a wide variety of biological systems, ion channels still remain under exploited as drug targets.
View Article and Find Full Text PDFLigand-gated ion channels are important control elements in regulation of cellular activities, and increasing evidence demonstrates their role as therapeutic targets. The receptors display complex desensitization kinetics, occurring on vastly different time scales. This is not only important in biology and pharmacology but might also be of technological significance since populations of receptors under microfluidic control can function analogously to DRAM memory circuits.
View Article and Find Full Text PDFWe report that GABA(A) receptors in a patch-clamped biological cell form a short-term memory circuit when integrated with a scanning-probe microfluidic device. Laminar patterns of receptor activators (agonists) provided by the microfluidic device define and periodically update the data input which is read and stored by the receptors as state distributions (based on intrinsic multistate kinetics). The memory is discharged over time and lasts for seconds to minutes depending on the input function.
View Article and Find Full Text PDFThe formation of a high-resistance electrical seal between a cell membrane and a glass micropipet tip is essential in patch-clamp experiments. We have studied the electrical properties and the mechanical stability of the seal using a microfluidic chip generating laminar flow in open volumes. We show that, by using fluid flow (1-10 mm/s) acting along the symmetry axis of the cell-pipet, seals of a higher mechanical stability with increased resistances can be achieved, allowing up to 100% longer recording times and over 40% decreased noise levels (Irms).
View Article and Find Full Text PDFWe describe an on-chip microfluidic gradient-generating device that generates concentration gradients spanning nearly 5 orders of magnitude starting from a single concentration. The exiting stream of drugs held at different concentrations remains laminar in a recording chamber and can be presented as 24 discrete solutions to a cell-based sensor. The high-performance characteristics of the device are demonstrated by pharmacological screening of voltage-gated K+ channels (hERG) and ligand-gated GABA(A) receptors using scanning-probe patch-clamp measurements.
View Article and Find Full Text PDFAlgorithms and methods were developed to synthesize complex chemical waveforms in open volumes by using a scanning-probe microfluidic platform. Time-dependent variations and oscillations of one or several chemical species around the scanning probe, such as formation of sine waves, damped oscillations, and generation of more complex patterns, are demonstrated. Furthermore, we show that intricate bursting and chaotic calcium oscillations found in biological microdomains can be reproduced and that a biological cell can be used as a probe to study receptor functionalities as a function of exposure to time-dependent variations of receptor activators and inhibitors.
View Article and Find Full Text PDFWe report on a microfluidic device that generates separate solution environments in macroscopic volumes. Spatially distinct patterns are created by emitting fluids from 16 different sources (closely spaced microchannels) into a solution-filled macroscopic chamber. The fluid in neighboring microchannels couples viscously in the macroscopic container, generating one single interdigitated stream.
View Article and Find Full Text PDFWe describe nanotube-vesicle networks with reconstituted membrane protein from cells and with interior activity defined by an injection of microparticles or molecular probes. The functionality of a membrane protein after reconstitution was verified by single-channel ion conductance measurements in excised inside-out patches from the vesicle membranes. The distribution of protein, determined by fluorescence detection, in the network membrane was homogeneous and could diffuse via a nanotube connecting two vesicles.
View Article and Find Full Text PDFThis paper presents a microfluidics-patch clamp platform for performing high-throughput screening and rapid characterization of weak-affinity ion channel-ligand interactions. This platform integrates a microfluidic chip consisting of multiple channels entering an open volume with standard patch clamp equipment. The microfluidic chip is placed on a motorized scanning stage and the method relies on the ability to scan rapidly, on the order of milliseconds, a patch-clamped cell across discrete zones of different solutions created in the open volume.
View Article and Find Full Text PDF