Publications by authors named "Jon Seiler"

Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds.

View Article and Find Full Text PDF

Unlabelled: H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model.

View Article and Find Full Text PDF

Influenza A viruses of the H1N1 subtype have emerged from the avian influenza gene pool in aquatic birds and caused human pandemics at least twice during the past century. Despite this fact, surprisingly little is known about the H1N1 gene pool in the aquatic bird reservoir. A preliminary study showed that an H1N1 virus from a shorebird of the Charadriiformes order was transmitted between animals through the airborne route of infection, whereas an H1N1 virus from a bird of the Anseriformes order was not.

View Article and Find Full Text PDF

Human infection with avian influenza A(H7N9) virus is associated mainly with the exposure to infected poultry. The factors that allow interspecies transmission but limit human-to-human transmission are unknown. Here we show that A/Anhui/1/2013(H7N9) influenza virus infection of chickens (natural hosts) is asymptomatic and that it generates a high genetic diversity.

View Article and Find Full Text PDF

H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50.

View Article and Find Full Text PDF

Background: Despite the use of vaccines, low-pathogenic (LP) H5N2 influenza viruses have continued to circulate and evolve in chickens in Mexico since 1993, giving rise to multiple genetic variants. Antigenic drift is partially responsible for the failure to control H5N2 influenza by vaccination; the contribution of maternal antibodies to this problem has received less attention.

Methods: We investigated the effect of different antisera on the efficacy of vaccination and whether booster doses of vaccine can impact immune suppression.

View Article and Find Full Text PDF

The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation.

View Article and Find Full Text PDF

The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.

View Article and Find Full Text PDF

Background: Multiple cases of transmission of avian H5N1 influenza viruses to humans illustrate the urgent need for an efficacious, cross-protective vaccine.

Methods: Ferrets were immunized with inactivated whole-virus vaccine produced by reverse genetics with the hemagglutinin (HA) and neuraminidase genes of A/HK/213/03 virus. Ferrets received a single dose of vaccine (7 or 15 microg of HA) with aluminum hydroxide adjuvant or 2 doses (7 microg of HA each) without adjuvant and were challenged with 10(6) 50% egg infectious doses of A/HK/213/03, A/HK/156/97, or A/Vietnam/1203/04 virus.

View Article and Find Full Text PDF

H9 influenza viruses have become endemic in land-based domestic poultry in Asia and have sporadically crossed to pigs and humans. To understand the molecular determinants of their adaptation to land-based birds, we tested the replication and transmission of several 1970s duck H9 viruses in chickens and quail. Quail were more susceptible than chickens to these viruses, and generation of recombinant H9 viruses by reverse genetics showed that changes in the HA gene are sufficient to initiate efficient replication and transmission in quail.

View Article and Find Full Text PDF