Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. Herein, we report a novel IDEPT strategy by employing a His-tagged type I 2'-deoxyribosyltransferase (His-PDT) covalently attached to glutaraldehyde-activated magnetic iron oxide nanoparticles (MIONPs).
View Article and Find Full Text PDFThe application of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation has recently concentrated its efforts on utilizing cellular systems to predict toxicity in organisms. In this context, while refining the data obtained from cell lines, this study assesses their bioaccumulation potential and various methods for extrapolating the in vitro metabolization rate constant to support modelled bioaccumulation assessments for fish and their limitations. For this purpose, the concentrations of the parent compound, phenanthrene, and its major metabolites within the cells and in the medium at various exposure times were quantified.
View Article and Find Full Text PDFBiotransformation can greatly influence the accumulation and, subsequently, toxicity of substances in living beings. Although traditionally these studies to quantify metabolization of a compound have been carried out with in vivo species, currently, in vitro test methods with very different cell lines are being developed for their evaluation. However, this is still a very limited field due to multiple variables of a very diverse nature.
View Article and Find Full Text PDFPolybrominated diphenyl ethers (PBDEs) are well-known endocrine disrupting chemicals identified as organic persistent pollutants. Their metabolites OH-BDE and MeO-BDE have been reported to be potentially more toxic than the postulated precursor PBDEs. One of the most predominant congeners of PBDEs in the environment is BDE-47, due to its high presence in industrially used mixtures.
View Article and Find Full Text PDFAntidepressant drugs are widely used for the treatment of common mental or other psychiatric disorders such as depression, which affect about 121 million people worldwide. This widespread use has contributed to the input of these pharmaceuticals and their metabolites into the environment. The aim of this work was to develop an analytical method to quantify the most widely used antidepressant drugs, selective serotonin reuptake inhibitors (SSRI), and their main metabolites in the environment.
View Article and Find Full Text PDFQuantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se·L as both selenite and chitosan-modified selenium nanoparticles (Ch-SeNPs), was achieved by the application of a method based on headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC-MS).
View Article and Find Full Text PDFSelenium (Se) at very low doses has important functions for humans. Unfortunately, the low levels of Se in soils in various regions of the world have implemented the agronomic biofortification of crops by applying Se-enriched fertilizers (mainly based on selenate). Lately, the use of nanofertilizers is growing in interest as their low size reduces the amount of chemicals and minimizes nutrient losses in comparison with conventional bulk fertilizers.
View Article and Find Full Text PDFA new calibration method based on the use of headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC/MS) was developed for quantifying Se volatile organic species released by plants exposed to chitosan-modified selenium nanoparticles (Cs-SeNPs). The effect of several parameters affecting extraction and separation of the selected organic species of selenium (dimethylselenium (DMSe), diethylselenium (DESe) and dimethyldiselenium (DMDSe)) and deuterated dimethyl sulphide (d-DMS) employed as internal standard were studied and optimized using an experimental design. The developed methodology was applied for quantifying the volatile selenium compounds produced over time by the plant species Raphanus sativus and Brassica juncea grown in hydroponic solution containing 5 mg Se L in the form Cs-SeNPs.
View Article and Find Full Text PDFMercury still represents one of the most hazardous threats for the aquatic ecosystem due to its high toxicity, and the fact that it can be easily incorporated into the food chain by accumulation in fish as MeHg. On the other hand, selenium is a micronutrient that is part of different antioxidant enzymes that regulate the cellular redox state, and whose complex interaction with Hg has been extensively studied from a toxicological point of view. In order to evaluate the protective effect of Se(IV) co-administration against MeHg accumulation and toxicity, we have selected an in-vivo model at two developmental stages: zebrafish eleutheroembryos and adult fish.
View Article and Find Full Text PDFIn this study we evaluated the exposure effects of mixtures of five polycyclic aromatic hydrocarbons (PAHs); namely, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene and chrysene on zebrafish embryos. Supplementation of the exposure media with 0.45% dimethyl sulfoxide and 50 ppm of Tween 20 could guarantee the solubilization and stabilization of the PAHs up to 24 h without affecting the embryos development.
View Article and Find Full Text PDFThe behavior of 15 benzimidazoles, including their main metabolites, using several C18 columns with standard or narrow-bore diameters and different particle size and type were evaluated. These commercial columns were selected because their differences could affect separation of benzimidazoles, and so they can be used as alternative columns. A simple screening method for the analysis of benzimidazole residues and their main metabolites was developed.
View Article and Find Full Text PDFThe production of titanium dioxide nanoparticles (TiO(2) NPs) for commercial applications has greatly increased over the last years and consequently the potential risk for human health. There is a growing awareness of the need to understand the behavior and influence these nanoparticles exert on the environment. Bioaccumulation serves as a good integrator to assess chemical exposure in aquatic systems and is dependent on factors, such as the exposure routes, diet and the aqueous medium.
View Article and Find Full Text PDF