Publications by authors named "Jon Reinders"

Doubled haploid (DH) technologies accelerate maize inbred development. Recently, methods using CRISPR-Cas have created gene-edited maize DH populations, albeit with relatively low editing frequencies. Restoring fertility via haploid chromosome doubling remains a critically important production constraint.

View Article and Find Full Text PDF

We have addressed the possible epigenetic contribution to heterosis using epigenetic inbred lines (epiRILs) with varying levels and distributions of DNA methylation. One line consistently displayed parent-of-origin heterosis for growth-related traits. Genome-wide transcription profiling followed by a candidate gene approach revealed 33 genes with altered regulation in crosses of this line that could contribute to the observed heterosis.

View Article and Find Full Text PDF

Retrotransposons are ubiquitous mobile genetic elements constituting a major part of eukaryotic genomes. Yet, monitoring retrotransposition and subsequent copy number increases in multicellular eukaryotes is intrinsically difficult. By following the transgenerational accumulation of a newly activated retrotransposon EVADE (EVD) in Arabidopsis, we noticed fast expansion of activated elements transmitted through the paternal germ line but suppression when EVD-active copies are maternally inherited.

View Article and Find Full Text PDF

The maize genome, with its large complement of transposons and repeats, is a paradigm for the study of epigenetic mechanisms such as paramutation and imprinting. Here, we present the genome-wide map of cytosine methylation for two maize inbred lines, B73 and Mo17. CG (65%) and CHG (50%) methylation (where H = A, C, or T) is highest in transposons, while CHH (5%) methylation is likely guided by 24-nt, but not 21-nt, small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

The mobility of genetic elements called transposable elements (TEs) was discovered half a century ago by Barbara McClintock. Although she had recognized them as chromosomal controlling elements, for much of the consequent time TEs were primarily considered as parasites of the host genome. However the recent explosion of discoveries in the fields of genomics and epigenetics have unambiguously shown the importance of TEs in genome function and evolution.

View Article and Find Full Text PDF

During sexual reproduction, one-half of the genetic material is deposited in gametes, and a complete set of chromosomes is restored upon fertilization. Reduction of the genetic information before gametogenesis occurs in meiosis, when cross-overs (COs) between homologous chromosomes secure an exchange of their genetic information. COs are not evenly distributed along chromosomes and are suppressed in chromosomal regions encompassing compact, hypermethylated centromeric and pericentromeric DNA.

View Article and Find Full Text PDF

Bisulfite conversion of genomic DNA differentiates cytosines from 5-methylcytosines and, thus, identifies DNA methylation patterns at the single-base level. Here, we review recent developments incorporating high-throughput sequencing of bisulfite-converted DNA for target-specific analyses and genome-wide mapping of plant and mammalian methylomes. These developments include the analysis of human embryonic stem cell and fetal fibroblast methylomes at single-base resolution, which supports the presence of non-CG DNA methylation in wild-type embryonic stem cells and induced pluripotent stem cells.

View Article and Find Full Text PDF

The patterns of DNA methylation, referred to as the "methylome," must be faithfully propagated for proper development of plants and mammals. However, it has been unclear to which extent transgenerational epigenetic inheritance will be affected after DNA methylation distribution has been altered. Recently, three reports have addressed this issue in the model plant Arabidopsis thaliana.

View Article and Find Full Text PDF

Retrotransposons are mobile genetic elements that populate chromosomes, where the host largely controls their activities. In plants and mammals, retrotransposons are transcriptionally silenced by DNA methylation, which in Arabidopsis is propagated at CG dinucleotides by METHYLTRANSFERASE 1 (MET1). In met1 mutants, however, mobilization of retrotransposons is not observed, despite their transcriptional activation.

View Article and Find Full Text PDF

Transgenerational epigenetic inheritance has been defined by the study of relatively few loci. We examined a population of recombinant inbred lines with epigenetically mosaic chromosomes consisting of wild-type and CG methylation-depleted segments (epiRILs). Surprisingly, transposons that were immobile in the parental lines displayed stochastic movement in 28% of the epiRILs.

View Article and Find Full Text PDF

Methylation of cytosines ((m)C) is essential for epigenetic gene regulation in plants and mammals. Aberrant (m)C patterns are associated with heritable developmental abnormalities in plants and with cancer in mammals. We have developed a genome-wide DNA methylation profiling technology employing a novel amplification step for DNA subjected to bisulfite-mediated cytosine conversion.

View Article and Find Full Text PDF

Maintenance of CG methylation ((m)CG) patterns is essential for chromatin-mediated epigenetic regulation of transcription in plants and mammals. However, functional links between (m)CG and other epigenetic mechanisms in vivo remain obscure. Using successive generations of an Arabidopsis thaliana mutant deficient in maintaining (m)CG, we find that (m)CG loss triggers genome-wide activation of alternative epigenetic mechanisms.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: