The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variations they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae).
View Article and Find Full Text PDFIn response to environmental stimuli, including variation in the presence of conspecifics, genotypes show highly plastic responses in behavioral and physiological traits influencing reproduction. Although extensively documented in males, such female responses are rather less studied. We expect females to be highly responsive to environmental variation and to differentially allocate resources to increase offspring fitness, given the major contribution of mothers to offspring number, size, and developmental conditions.
View Article and Find Full Text PDFGenetic variation segregates as linked sets of variants or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. Yet, genomic data often omit haplotype information due to constraints in sequencing technologies.
View Article and Find Full Text PDFMany organisms are experiencing changing daily light regimes due to latitudinal range shifts driven by climate change and increased artificial light at night (ALAN). Activity patterns are often driven by light cycles, which will have important consequences for species interactions. We tested whether longer photoperiods lead to higher parasitism rates by a day-active parasitoid on its host using a laboratory experiment in which we independently varied daylength and the presence of ALAN.
View Article and Find Full Text PDFAs climate change transforms seasonal patterns of temperature and precipitation, germination success at marginal temperatures will become critical for the long-term persistence of many plant species and communities. If populations vary in their environmental sensitivity to marginal temperatures across a species' geographical range, populations that respond better to future environmental extremes are likely to be critical for maintaining ecological resilience of the species. Using seeds from two to six populations for each of nine species of Mediterranean plants, we characterized patterns of among-population variation in environmental sensitivity by quantifying genotype-by-environment interactions (G × E) for germination success at temperature extremes, and under two light regimes representing conditions below and above the soil surface.
View Article and Find Full Text PDFTwo major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing.
View Article and Find Full Text PDFRecently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S.
View Article and Find Full Text PDFAdvances in phenology (the annual timing of species' life-cycles) in response to climate change are generally viewed as bioindicators of climate change, but have not been considered as predictors of range expansions. Here, we show that phenology advances combine with the number of reproductive cycles per year (voltinism) to shape abundance and distribution trends in 130 species of British Lepidoptera, in response to ~0.5 °C spring-temperature warming between 1995 and 2014.
View Article and Find Full Text PDFPopulation genetic models of evolution along linear environmental gradients cannot explain why adaptation stops at ecological margins. This is because, unless models impose reductions in carrying capacity at species' edges, the dominant effect of gene flow is to increase genetic variance and adaptive potential rather than swamping local adaptation. This allows the population to match even very steep changes in trait optima.
View Article and Find Full Text PDFDuring the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco-morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied , a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation.
View Article and Find Full Text PDFTrends Ecol Evol
October 2017
Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change.
View Article and Find Full Text PDFPredicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species' abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is constant throughout a species' range and will remain so in future and (ii) that abiotic factors (e.
View Article and Find Full Text PDFGlob Chang Biol
January 2017
Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales.
View Article and Find Full Text PDFThe changes in species' geographical distribution demanded by climate change are often critically limited by the availability of key interacting species. In such cases, species' persistence will depend on the rapid evolution of biotic interactions. Understanding evolutionary limits to such adaptation is therefore crucial for predicting biological responses to environmental change.
View Article and Find Full Text PDFGeneralist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare.
View Article and Find Full Text PDFMost eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest.
View Article and Find Full Text PDFForest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees.
View Article and Find Full Text PDFPoleward range expansions are widespread responses to recent climate change and are crucial for the future persistence of many species. However, evolutionary change in traits such as colonization history and habitat preference may also be necessary to track environmental change across a fragmented landscape. Understanding the likelihood and speed of such adaptive change is important in determining the rate of species extinction with ongoing climate change.
View Article and Find Full Text PDFWhen species shift their ranges to track climate change, they are almost certain to experience novel environments to which they are poorly adapted. Otaki and co-workers document an explosion of wing pattern variation accompanying range expansion in the pale grass blue butterfly. This pattern can be replicated in the laboratory using artificial selection on cold shocked pupae, at temperature extremes typical of recently colonized environments.
View Article and Find Full Text PDFAll species are restricted in their distribution. Currently, ecological models can only explain such limits if patches vary in quality, leading to asymmetrical dispersal, or if genetic variation is too low at the margins for adaptation. However, population genetic models suggest that the increase in genetic variance resulting from dispersal should allow adaptation to almost any ecological gradient.
View Article and Find Full Text PDFInterspecific hybridization and polyploidy are pivotal processes in plant evolution and speciation. The fate of new hybrid and polyploid taxa is determined by their ability to reproduce either sexually or asexually. Hybrids and allopolyploids with odd chromosome numbers are frequently sterile but some establish themselves through asexual reproduction (vegetative or apomixis).
View Article and Find Full Text PDFTrends Ecol Evol
September 2009
Two decades of intensive research have provided compelling evidence for a link between biodiversity and ecosystem functioning (B-EF). Whereas early B-EF research concentrated on species richness and single processes, recent studies have investigated different measures of both biodiversity and ecosystem functioning, such as functional diversity and joint metrics of multiple processes. There is also a shift from viewing assemblages in terms of their contribution to particular processes toward placing them within a wider food web context.
View Article and Find Full Text PDFHybrid zone theory provides a powerful theoretical framework for measuring and testing gene flow and selection. The Senecio aethnensis and Senecio chrysanthemifolius hybrid zone on Mount Etna, Sicily, was investigated to identify phenotypic traits under divergent selection and to assess the contributions of intrinsic and extrinsic selection against hybrids to hybrid zone maintenance. Senecio samples from 14 sites across Mount Etna were analyzed for 24 quantitative traits classified into four groups (QTGs), six allozymes and seven simple sequence repeat (SSR) loci to describe patterns of variation throughout the hybrid zone.
View Article and Find Full Text PDFGiven that evolution can generate rapid and dramatic shifts in the ecological tolerance of a species, what prevents populations adapting to expand into new habitat at the edge of their distributions? Recent population genetic models have focused on the relative costs and benefits of migration between populations. On the one hand, migration may limit adaptive divergence by preventing local populations from matching their local selective optima. On the other hand, migration may also contribute to the genetic variance necessary to allow populations to track these changing optima.
View Article and Find Full Text PDF