Background: Alterations in ileal Paneth cell (PC) density have been described in gut inflammatory diseases such as Crohn's disease (CD) and could be used as a biomarker for disease prognosis. However, quantifying PCs is time-intensive, a barrier for clinical workflow. Deep learning (DL) has transformed the development of robust and accurate tools for complex image evaluation.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
May 2022
Purpose Of Review: The field of pathology is currently undergoing a significant transformation from traditional glass slides to a digital format dependent on whole slide imaging. Transitioning from glass to digital has opened the field to development and application of image analysis technology, commonly deep learning methods (artificial intelligence [AI]) to assist pathologists with tissue examination. Nephropathology is poised to leverage this technology to improve precision, accuracy, and efficiency in clinical practice.
View Article and Find Full Text PDFImportance: A chronic shortage of donor kidneys is compounded by a high discard rate, and this rate is directly associated with biopsy specimen evaluation, which shows poor reproducibility among pathologists. A deep learning algorithm for measuring percent global glomerulosclerosis (an important predictor of outcome) on images of kidney biopsy specimens could enable pathologists to more reproducibly and accurately quantify percent global glomerulosclerosis, potentially saving organs that would have been discarded.
Objective: To compare the performances of pathologists with a deep learning model on quantification of percent global glomerulosclerosis in whole-slide images of donor kidney biopsy specimens, and to determine the potential benefit of a deep learning model on organ discard rates.
Background: Pathologist evaluation of donor liver biopsies provides information for accepting or discarding potential donor livers. Due to the urgent nature of the decision process, this is regularly performed using frozen sectioning at the time of biopsy. The percent steatosis in a donor liver biopsy correlates with transplant outcome, however there is significant inter- and intra-observer variability in quantifying steatosis, compounded by frozen section artifact.
View Article and Find Full Text PDFImage-based classification of liver disease generally lacks specificity for distinguishing between acute, resolvable injury and chronic irreversible injury. We propose that ultrasound radiofrequency data acquired in vivo from livers subjected to toxic drug injury can be analyzed with information theoretic detectors to derive entropy metrics, which classify a statistical distribution of pathologic scatterers that dissipate over time as livers heal. Here we exposed 38 C57BL/6 mice to carbon tetrachloride to cause liver damage, and imaged livers in vivo 1, 4, 8, 12 and 18 d after exposure with a broadband 15-MHz probe.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2018
Transplantable kidneys are in very limited supply. Accurate viability assessment prior to transplantation could minimize organ discard. Rapid and accurate evaluation of intra-operative donor kidney biopsies is essential for determining which kidneys are eligible for transplantation.
View Article and Find Full Text PDFObjective: Despite significant advances in intravascular stent technology, safe prevention of stent thrombosis over prolonged periods after initial deployment persists as a medical need to decrease device failure. The objective of this project was to assess the potential of perfluorocarbon nanoparticles (NP) conjugated with the direct thrombin inhibitor D-phenylalanyl-L-prolyl-L-arginyl chloromethylketone (PPACK-NP) to inhibit stent thrombosis.
Methods: In a static model of stent thrombosis, 3 × 3-mm pieces of stainless steel coronary stents were cut and adsorbed with thrombin to create a procoagulant surface that would facilitate thrombus development.
Virtually all modern imaging devices collect electromagnetic or acoustic waves and use the energy carried by these waves to determine pixel values to create what is basically an "energy" picture. However, waves also carry "information", as quantified by some form of entropy, and this may also be used to produce an "information" image. Numerous published studies have demonstrated the advantages of entropy, or "information imaging", over conventional methods.
View Article and Find Full Text PDFMelittin is a cytolytic peptide derived from bee venom that inserts into lipid membranes and oligomerizes to form membrane pores. Although this peptide is an attractive candidate for treatment of cancers and infectious processes, its nonspecific cytotoxicity and hemolytic activity have limited its therapeutic applications. Several groups have reported the development of cytolytic peptide prodrugs that only exhibit cytotoxicity following activation by site-specific proteases.
View Article and Find Full Text PDFDuchenne muscular dystrophy in boys progresses rapidly to severe impairment of muscle function and death in the second or third decade of life. Current supportive therapy with corticosteroids results in a modest increase in strength as a consequence of a general reduction in inflammation, albeit with potential untoward long-term side effects and ultimate failure of the agent to maintain strength. Here, we demonstrate that alternative approaches that rescue defective autophagy in mdx mice, a model of Duchenne muscular dystrophy, with the use of rapamycin-loaded nanoparticles induce a reproducible increase in both skeletal muscle strength and cardiac contractile performance that is not achievable with conventional oral rapamycin, even in pharmacological doses.
View Article and Find Full Text PDFThe emerging demand for programmable functionalization of existing base nanocarriers necessitates development of an efficient approach for cargo loading that avoids nanoparticle redesign for each individual application. Herein, we demonstrate in vivo a postformulation strategy for lipidic nanocarrier functionalization with the use of a linker peptide, which rapidly and stably integrates cargos into lipidic membranes of nanocarriers after simple mixing through a self-assembling process. We exemplified this strategy by generating a VCAM-1-targeted perfluorocarbon nanoparticle for in vivo targeting in atherosclerosis (ApoE-deficient) and breast cancer (STAT-1-deficient) models.
View Article and Find Full Text PDFCytolytic peptides have commanded attention for their anticancer potential because the membrane-disrupting function that produces cell death is less likely to be overcome by resistant mutations. Congruently, peptides that are involved in molecular recognition and biological activities become attractive therapeutic candidates because of their high specificity, better affinity, reduced immunogenicity, and reduced off target toxicity. However, problems of inadequate delivery, rapid deactivation in vivo, and poor bioavailability have limited clinical application.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2011
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive weakness and wasting of skeletal and cardiac muscle; boys present with weakness by the age of 5 years and, if left untreated, are unable to walk without assistance by the age of 10 years. Therapy for DMD has been primarily palliative, with oral steroids emerging as a first-line approach even though this treatment has serious side-effects. Consequently, low-cost imaging technology suitable for improved diagnosis and treatment monitoring of DMD would be of great value, especially in remote and underserved areas.
View Article and Find Full Text PDFA new site-targeted molecular imaging contrast agent based on a nanocolloidal suspension of lipid-encapsulated, organically soluble divalent copper has been developed. Concentrating a high payload of divalent copper ions per nanoparticle, this agent provides a high per-particle r1 relaxivity, allowing sensitive detection in T1-weighted magnetic resonance imaging when targeted to fibrin clots in vitro. The particle also exhibits a defined clearance and safety profile in vivo.
View Article and Find Full Text PDFAim: To develop a fibrin-specific urokinase nanomedicine thrombolytic agent.
Materials & Methods: In vitro fibrin-clot dissolution studies were utilized to develop and characterize simultaneous coupling and loading of anti-fibrin monoclonal antibody and urokinase onto perfluorocarbon nanoparticle (NP) surface. In vivo pharmacokinetics and fibrin-specific targeting of the nanolytic agent was studied in dogs.
IEEE Trans Ultrason Ferroelectr Freq Control
August 2010
Previously, we reported new methods for ultrasound signal characterization using entropy, H(f); a generalized entropy, the Renyi entropy, I(f)(r); and a limiting form of Renyi entropy suitable for real-time calculation, I(f),(infinity). All of these quantities demonstrated significantly more sensitivity to subtle changes in scattering architecture than energy-based methods in certain settings. In this study, the real-time calculable limit of the Renyi entropy, I(f),(infinity), is applied for the imaging of angiogenic murine neovasculature in a breast cancer xenograft using a targeted contrast agent.
View Article and Find Full Text PDFCurrent strategies for deploying synthetic nanocarriers involve the creation of agents that incorporate targeting ligands, imaging agents, and/or therapeutic drugs into particles as an integral part of the formulation process. Here we report the development of an amphipathic peptide linker that enables postformulation editing of payloads without the need for reformulation to achieve multiplexing capability for lipidic nanocarriers. To exemplify the flexibility of this peptide linker strategy, 3 applications were demonstrated: converting nontargeted nanoparticles into targeting vehicles; adding cargo to preformulated targeted nanoparticles for in vivo site-specific delivery; and labeling living cells for in vivo tracking.
View Article and Find Full Text PDFThe in vivo application of cytolytic peptides for cancer therapeutics is hampered by toxicity, nonspecificity, and degradation. We previously developed a specific strategy to synthesize a nanoscale delivery vehicle for cytolytic peptides by incorporating the nonspecific amphipathic cytolytic peptide melittin into the outer lipid monolayer of a perfluorocarbon nanoparticle. Here, we have demonstrated that the favorable pharmacokinetics of this nanocarrier allows accumulation of melittin in murine tumors in vivo and a dramatic reduction in tumor growth without any apparent signs of toxicity.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2007
Duchenne muscular dystrophy is a severe wasting disease, involving replacement of necrotic muscle tissue by fibrous material and fatty infiltrates. One primary animal model of this human disease is the X chromosome-linked mdx strain of mice. The goals of the present work were to validate and quantify the capability of both energy and entropy metrics of radio-frequency ultrasonic backscatter to differentiate among normal, dystrophic, and steroid-treated skeletal muscle in the mdx model.
View Article and Find Full Text PDFNanomedicine promises to enhance the ability of clinicians to address some of the serious challenges responsible for cardiovascular mortality, morbidity and numerous societal consequences. Targeted imaging and therapy applications with perfluorocarbon nanoparticles are relevant to a broad spectrum of cardiovascular diseases, ranging from asymptomatic atherosclerotic disease to acute myocardial infarction or stroke. As illustrated in this article, perfluorocarbon nanoparticles offer new tools to recognize and characterize pathology, to identify and segment high-risk patients and to treat chronic and acute disease.
View Article and Find Full Text PDFThe dystrophinopathies comprise a group of X-linked genetic diseases that feature dystrophin deficiency. Duchenne and Becker muscular dystrophy are characterized by progressive weakness and wasting of skeletal, smooth, and/or cardiac muscle. Duchenne muscular dystrophy (DMD) is the most severe dystrophinopathy, with an incidence of 1:3500 male births.
View Article and Find Full Text PDFTargeted, liquid perfluorocarbon nanoparticles are effective agents for acoustic contrast enhancement of abundant cellular epitopes (e.g., fibrin in thrombi) and for lower prevalence binding sites, such as integrins associated with tumor neovasculature.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2006
We describe characterization of backscatter from tumor tissue targeted with a nanoparticle-based ultrasound contrast agent in vivo using analogs of thermodynamic quantities. We apply these waveform characteristics to detection of tumor neovasculature in tumors implanted in athymic nude mice, which were imaged using a research ultrasound scanner over a 2-hour period after injection of alpha upsilon beta3-targeted perfluorocarbon nanoparticles. Images were constructed from backscattered ultrasound using two different approaches: fundamental B-mode imaging and a signal receiver based on a thermodynamic analog (H(C)).
View Article and Find Full Text PDFPerfluorocarbon nanoparticles consisting essentially of liquid perfluoro-octyl bromide (PFOB) core surrounded by a lipid monolayer can serve as highly specific site-targeted contrast and therapeutic agents after binding to cellular biomarkers. Based on previous findings that ultrasound applied at 2 MHz and 1.9 mechanical index (MI) for a 5-min duration dramatically enhances the cellular interaction of targeted PFOB nanoparticles with melanoma cells in vitro without inducing apoptosis or other harmful effects to cells that are targeted, we sought to define mechanisms of interaction and the safety profile of ultrasound used in conjunction with liquid perfluorocarbon nanoparticles for targeted drug delivery, as compared with conventional microbubble ultrasound contrast agents under identical insonification conditions.
View Article and Find Full Text PDF