Publications by authors named "Jon Mar Bjornsson"

The use of plants as heterologous hosts to produce recombinant proteins has some intriguing advantages. There is, however, the potential of overloading the endoplasmic reticulum (ER) capacity when producing recombinant proteins in the seeds. This leads to an ER-stress condition and accumulating of unfolded proteins.

View Article and Find Full Text PDF

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses, an IgE-mediated reaction to Culicoides midges. Causative Culicoides spp. are not indigenous in Iceland resulting in high prevalence of IBH in horses born in Iceland and exported as compared to Icelandic horses born in a Culicoides rich environment.

View Article and Find Full Text PDF

Seeds have evolutionarily developed to store protein without immediately degrading it and constitute ideal tissues for recombinant protein storage. Unfortunately, the production of recombinant protein in seeds is compromised by low yield as compared to other heterologous expression systems. In order to improve the yield of the human epidermal growth factor (EGF) in barley, protein sink-source relations in the developing grain were modulated towards EGF instead of the barley storage protein.

View Article and Find Full Text PDF

Insect bite hypersensitivity is an allergic dermatitis of horses caused by bites of Culicoides midges. Sufficient amount of pure, endotoxin-free allergens is a prerequisite for development and monitoring of preventive and therapeutic allergen immunotherapy. Aims of the study were to compare the Culicoides nubeculosus (Cul n) allergens Cul n 3 and Cul n 4, produced in transgenic barley grains with the corresponding E.

View Article and Find Full Text PDF

The most popular hosts for recombinant protein production have now in many cases passed their low-hanging-fruit era and their limitations as production hosts are becoming more evident. Therefore, the bioprocessing community is constantly on the lookout for new hosts that can complement the current selection. The development of plant systems is eagerly followed because of the great potential they show, such as much reduced production cost and absence of endotoxins and human pathogens.

View Article and Find Full Text PDF

Myocardial infarction and stroke are caused by blood clots forming over a ruptured or denuded atherosclerotic plaque (atherothrombosis). Production of prostaglandin E(2) (PGE(2)) by an inflamed plaque exacerbates atherothrombosis and may limit the effectiveness of current therapeutics. Platelets express multiple G-protein coupled receptors, including receptors for ADP and PGE(2).

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is caused by deletion or mutation of both copies of the SMN1 gene, which produces an essential protein known as SMN. The severity of SMA is modified by variable copy number of a second gene,SMN2, which produces an mRNA that is incorrectly spliced with deletion of the last exon. We described previously the discovery of potent C5-substituted quinazolines that increase SMN2 gene expression by 2-fold.

View Article and Find Full Text PDF

Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord that is caused by deletion and/or mutation of the survival motor neuron gene ( SMN1). Adjacent to SMN1 are a variable number of copies of the SMN2 gene. The two genes essentially differ by a single nucleotide, which causes the majority of the RNA transcripts from SMN2 to lack exon 7.

View Article and Find Full Text PDF

The Homeobox (Hox) transcription factors are important regulators of normal and malignant hematopoiesis because they control proliferation, differentiation, and self-renewal of hematopoietic cells at different levels of the hematopoietic hierarchy. In transgenic mice we show that the expression of HOXA10 is tightly regulated by doxycycline. Intermediate concentrations of HOXA10 induced a 15-fold increase in the repopulating capacity of hematopoietic stem cells (HSCs) after 13 days of in vitro culture.

View Article and Find Full Text PDF

Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values.

View Article and Find Full Text PDF

Retroviral overexpression of the transcription factor HOXB4 results in a rapid increase in proliferation of murine hematopoietic stem cells both in vivo and in vitro. Therefore, we asked whether transient overexpression of HOXB4 would increase proliferation of human primitive hematopoietic progenitors. Transient overexpression of HOXB4 was generated in umbilical cord blood (CB) CD34(+) cells by a recombinant adenovirus (AdHOXB4) expressing HOXB4 together with the enhanced green fluorescent protein (GFP).

View Article and Find Full Text PDF

Studies in vitro implicate transforming growth factor beta (TGF-beta) as a key regulator of hematopoiesis with potent inhibitory effects on progenitor and stem cell proliferation. In vivo studies have been hampered by early lethality of knock-out mice for TGF-beta isoforms and the receptors. To directly assess the role of TGF-beta signaling for hematopoiesis and hematopoietic stem cell (HSC) function in vivo, we generated a conditional knock-out model in which a disruption of the TGF-beta type I receptor (T beta RI) gene was induced in adult mice.

View Article and Find Full Text PDF

Several homeobox transcription factors, such as HOXB3 and HOXB4, have been implicated in regulation of hematopoiesis. In support of this, studies show that overexpression of HOXB4 strongly enhances hematopoietic stem cell regeneration. Here we find that mice deficient in both Hoxb3 and Hoxb4 have defects in endogenous hematopoiesis with reduced cellularity in hematopoietic organs and diminished number of hematopoietic progenitors without perturbing lineage commitment.

View Article and Find Full Text PDF