Publications by authors named "Jon Lartey"

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Introduction: Placenta-associated pregnancy complications, including pre-eclampsia (PE) and intrauterine growth restriction (IUGR) are conditions postulated to originate from initial failure of placentation, leading to clinical sequelae indicative of endothelial dysfunction. Vascular smooth muscle aberrations have also been implicated in the pathogenesis of both disorders via smooth muscle contractility and relaxation mediated by Myosin Light Chain Phosphatase (MLCP) and the oppositional contractile action of Myosin Light Chain Kinase. PPP1R12A is a constituent part of the MLCP complex responsible for dephosphorylation of myosin fibrils.

View Article and Find Full Text PDF

Background: Myosin light-chain phosphatase is a trimeric protein that hydrolyses phosphorylated myosin II light chains (MYLII) to cause relaxation in smooth muscle cells including those of the uterus. A major component of the phosphatase is the myosin targeting subunit (MYPT), which directs a catalytic subunit to dephosphorylate MYLII. There are 5 main MYPT family members (MYPT1 (PPP1R12A), MYPT2 (PPP1R12B), MYPT3 (PPP1R16A), myosin binding subunit 85 MBS85 (PPP1R12C) and TIMAP (TGF-beta-inhibited membrane-associated protein (PPP1R16B)).

View Article and Find Full Text PDF

Background: ARF6 (ADP-ribosylation factor 6) small GTP binding protein plays critical roles in actin cytoskeleton rearrangements and membrane trafficking, including internalisation of G protein coupled receptors (GPCR). ARF6 operates by cycling between GDP-bound (inactive) and GTP-bound (active) forms and is a potential regulator of GPCR-mediated uterine activity during pregnancy and labour. ARF6 contains very low intrinsic GTP binding activity and depends on GEFs (guanine nucleotide exchange factors) such as CYTH3 (cytohesin 3) to bind GTP.

View Article and Find Full Text PDF