Publications by authors named "Jon Johansen"

Background: Chlorinated paraffins (CPs) are industrial chemicals categorised as persistent organic pollutants because of their toxicity, persistency and tendency to long-range transport, bioaccumulation and biomagnification. Despite having been the subject of environmental attention for decades, analytical methods for CPs still struggle reaching a sufficient degree of accuracy. Among the issues negatively impacting the quantification of CPs, the unavailability of well-characterised standards, both as pure substances and as matrix (certified) reference materials (CRMs), has played a major role.

View Article and Find Full Text PDF

Chlorinated paraffins (CPs) are a notoriously known class of compounds that stand amongst the most wide-spread persistent organic pollutants. Therefore, their reliable, repeatable, and reproducible quantitative analysis using well-defined reference standards is of utmost importance. In view of the increasing demand for constitutionally and stereochemically defined CP standards, we have synthesized a stereoisomeric mixture of 3,4,7,8-tetrachlorodecane.

View Article and Find Full Text PDF
Article Synopsis
  • Reference materials (RMs) like dissolvable gelatin capsules and soda tablets are crucial for validating methods that detect microplastics, a new environmental pollutant, in various samples.* -
  • Dissolvable capsules were initially used for interlaboratory comparison (ILC) studies and showed excellent recovery rates, but were later replaced by more reliable soda tablets that provided consistent results with different polymer mixtures.* -
  • While the current methods perform well for larger microplastics, further optimization is necessary for detecting smaller fragments (<50 µm), as the quality assurance and quality control (QA/QC) results are less reliable for them.*
View Article and Find Full Text PDF

A new simple method for chlorine percentage calculations (method C), from proton nuclear magnetic resonance (H NMR) spectroscopy, has been established and applied to an industrial chlorinated paraffin (CP) mixture and 13 single-chain CPs of known carbon chain lengths. Two modified methods (method A and B), originating from the work of Sprengel et al., have been utilized on the same single-chain mixtures.

View Article and Find Full Text PDF

Protein tyrosine phosphorylation is key to activation of receptor tyrosine kinases (RTK) that drive development of some cancers. One challenge of RTK-targeted therapy is identification of those tumors that express non-mutated but activated RTKs. Phosphotyrosine (pTyr) RTK levels should be more predictive of the latter than expressed total protein.

View Article and Find Full Text PDF

Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS PAGE) is a method that separates proteins according to their isoelectric points in the first dimension and molecular masses in the second dimension. Evidence is provided that 2D SDS PAGE is reproducible, robust and compatible with SDS in both dimensions including isoelectric focusing in tube gels, the first dimension. The 2D gel pattern of rat liver microsomes shows more detail and sharper spot outlines when dissolved in SDS buffer with heating than in urea buffer and is better yet when dissolved in a mixture of both buffers.

View Article and Find Full Text PDF

Background: The manifestation of major depressive disorder (MDD) may include cognitive symptoms that can precede the onset of MDD and persist beyond the resolution of acute depressive episodes. However, little is known about how cognitive symptoms are experienced by MDD patients and the people around them.

Methods: In this international (Brazil, Canada, China, France, and Germany) ethnographic study, we conducted semi-structured interviews and observations of remitted as well as symptomatic MDD patients (all patients self-reported being diagnosed by an HCP and self-reported being on an antidepressant) aged 18-60 years with self-reported cognitive symptoms (N = 34).

View Article and Find Full Text PDF

The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects.

View Article and Find Full Text PDF

(-)-∆9-Tetrahydrocannabinol is the principal psychoactive component of the cannabis plant and also the active ingredient in some prescribed drugs. To detect and control misuse and monitor administration in clinical settings, reference samples of the native drugs and their metabolites are needed. The accuracy of liquid chromatography/mass spectrometric quantification of drugs in biological samples depends among others on ion suppressing/alteration effects.

View Article and Find Full Text PDF

Stable isotope-labeled internal standards (SIL-ISs) are often used when applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze for legal and illegal drugs. ISs labeled with (13)C, (15)N, and (18)O are expected to behave more closely to their corresponding unlabeled analytes, compared with that of the more classically used (2)H-labeled ISs. This study has investigated the behavior of amphetamine, (2)H3-, (2)H5, (2)H6-, (2)H8-, (2)H11-, and (13)C6-labeled amphetamine, during sample preparation by liquid-liquid extraction and LC-MS/MS analyses.

View Article and Find Full Text PDF

The availability of high-quality (13)C-labelled internal standards will improve accurate quantification of narcotics and drugs in biological samples. Thus, the synthesis of 10 [(13)C6]-labelled phenethylamine derivatives, namely amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, 4-methoxyamphetamine, 4-methoxymethamphetamine, 3,5-dimethoxyphenethylamine 4-bromo-2,5-dimethoxyphenethylamine and 2,5-dimethoxy-4-iodophenethylamine, have been undertaken. [(13)C6]-Phenol proved to be an excellent starting material for making (13)C-labelled narcotic substances in the phenethylamine class, and a developed Stille-type coupling enabled an efficient synthesis of the 3,4-methylenedioxy and 4-methoxy derivatives.

View Article and Find Full Text PDF

The full (1)H and (13)C NMR chemical shift assignment of 2α-methyl-17α(H),21β(H)-hopane is presented. This compound is formed in mature sediments from biogenic sources of 2β-methyl-17β(H),21β(H)-hopanoids, which include several cyanobacteria. In addition, full (1)H and (13)C NMR chemical shift data of all four 17,21 isomers of 3β-methylhopane have been assigned.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs), a group of 209 individual congeners distinguishable by the number and position of bromines, are produced for use as flame retardants in consumer goods. PBDEs have become ubiquitous environmental contaminants, present in increasing levels in the environment and humans. In the present study, 10 individual monofluorinated analogues of PBDEs (F-PBDEs) and one difluorinated PBDE (FF-PBDE) were synthesized and characterized, and their gas chromatographic (GC) and mass spectrometric (MS) characteristics determined.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) have become widely distributed as environmental contaminants due to their wide-spread use as flame retardants. Their structural similarity to other halogenated organic pollutants, for example polychlorinated biphenyls (PCBs), has led to speculation that they may have similar toxicological properties and effects. Recent focus on PBDEs as possible priority pollutants has also led to an increasing need for reference standards of PBDEs for toxicological studies and for environmental analysis.

View Article and Find Full Text PDF

Monofluorinated polycyclic aromatic hydrocarbons (F-PAHs) have attracted much attention in analytical, environmental, toxicological and mechanistic studies because of their physico-chemical properties, which are closely similar to those of the parent PAHs. Because of this, full NMR characterization has become of interest. Complete 1H, 13C and 19F NMR chemical shifts, and also 1J(H,C), (n)J(C,F), (n)J(H,F) and (n)J(H,H) coupling constants, have been assigned for the F-PAHs 1-fluoronaphthalene, 2-fluorofluorene, 5-fluoroacenaphthylene, 2-fluorophenanthrene, 3-fluorophenanthrene, 3-fluorofluoranthene, 1-fluoropyrene, 1-fluorochrysene, 2-fluorochrysene, 3-fluorochrysene and 9-fluorobenzo[k]fluoranthene.

View Article and Find Full Text PDF