Publications by authors named "Jon Goerke"

Addition of ionic and nonionic water-soluble polymers to pulmonary surfactants in the presence of inactivating substances prevents surfactant inactivation in vitro and improves lung function in several models of lung injury. However, a recent report found opposite effects when surfactant plus polyethylene glycol (PEG) was used to treat lung injury caused by saline lung lavage. Therefore, we examined the reasons why the polymer effect is less evident in the saline lung lavage lung injury model.

View Article and Find Full Text PDF

Hyaluronan (HA), an ionic polymer, is normally present in the alveolar subphase and is known to decrease lung surfactant inactivation caused by serum in vitro. In this study, we examined whether HA can ameliorate the inactivating effects of meconium in vitro and in vivo. Surface activities of various mixtures of Survanta, HA, and meconium were measured using a modified pulsating bubble surfactometer.

View Article and Find Full Text PDF

Hyaluronan (HA) is an anionic polymer and a constituent of alveolar fluid that can bind proteins, phospholipids, and water. Previous studies have established that nonionic polymers improve the surface activity of pulmonary surfactants by decreasing inactivation of surfactant. In this work, we investigate whether HA can also have beneficial effects when added to surfactants.

View Article and Find Full Text PDF

Collectins are secreted collagen-like lectins that bind, agglutinate, and neutralize influenza A virus (IAV) in vitro. Surfactant proteins A and D (SP-A and SP-D) are collectins expressed in the airway and alveolar epithelium and could have a role in the regulation of IAV infection in vivo. Previous studies have shown that binding of SP-D to IAV is dependent on the glycosylation of specific sites on the HA1 domain of hemagglutinin on the surface of IAV, while the binding of SP-A to the HA1 domain is dependent on the glycosylation of the carbohydrate recognition domain of SP-A.

View Article and Find Full Text PDF

Neonates and infants with congenital heart disease with increased pulmonary blood flow suffer morbidity from poor oxygenation and decreased lung compliance. In a previous experiment involving 4-wk-old lambs with pulmonary hypertension secondary to increased pulmonary blood flow following an in utero placement of an aortopulmonary vascular graft, we found a decrease in surfactant protein (SP)-A gene expression as well as a decrease in SP-A and SP-B protein contents. To determine the timing of these changes, the objective of the present study was to characterize the effect of increased pulmonary blood flow and pulmonary hypertension on SP-A, -B, and -C gene expressions and protein contents within the first week of life.

View Article and Find Full Text PDF

Oligohydramnios (OH) retards fetal lung growth by producing less lung distension than normal. To examine effects of decreased distension on fetal lung development, we produced OH in rats by puncture of uterus and fetal membranes at 16 days of gestation; fetuses were delivered at 21 or 22 days of gestation. Controls were position-matched littermates in the opposite uterine horn.

View Article and Find Full Text PDF