Publications by authors named "Jon F Edd"

Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.

View Article and Find Full Text PDF

Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses.

View Article and Find Full Text PDF

Microfluidics have enabled notable advances in molecular biology, synthetic chemistry, diagnostics and tissue engineering. However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity and scalability of electronic circuits. Just as the electronic transistor enabled unprecedented advances in the automatic control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the automatic control of reagents, droplets and single cells on a microfluidic chip.

View Article and Find Full Text PDF

Microfluidics have enabled significant advances in molecular biology , synthetic chemistry , diagnostics , and tissue engineering . However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity, and scalability of electronic circuits . Just as the electronic transistor enabled unprecedented advances in the control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the complex, scalable control of reagents, droplets, and single cells on an autonomous microfluidic chip.

View Article and Find Full Text PDF

The successful application of antibody-based therapeutics in either primary or metastatic cancer depends upon the selection of rare cell surface epitopes that distinguish cancer cells from surrounding normal epithelial cells. By contrast, as circulating tumor cells (CTCs) transit through the bloodstream, they are surrounded by hematopoietic cells with dramatically distinct cell surface proteins, greatly expanding the number of targetable epitopes. Here, we show that an antibody (23C6) against cadherin proteins effectively suppresses blood-borne metastasis in mouse isogenic and xenograft models of triple negative breast and pancreatic cancers.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) enter the vasculature from solid tumors and disseminate widely to initiate metastases. Mining the metastatic-enriched molecular signatures of CTCs before, during, and after treatment holds unique potential in personalized oncology. Their extreme rarity, however, requires isolation from large blood volumes at high yield and purity, yet they overlap leukocytes in size and other biophysical properties.

View Article and Find Full Text PDF

The ability to isolate and analyze rare circulating tumor cells (CTCs) holds the potential to increase our understanding of cancer evolution and allows monitoring of disease and therapeutic responses through a relatively non-invasive blood-based biopsy. While many methods have been described to isolate CTCs from the blood, the vast majority rely on size-based sorting or positive selection of CTCs based on surface markers, which introduces bias into the downstream product by making assumptions about these heterogenous cells. Here we describe a negative-selection protocol for enrichment of CTCs through removal of blood components including red blood cells, platelets, and white blood cells.

View Article and Find Full Text PDF

Neutrophils are the largest population of white blood cells in the circulation, and their primary function is to protect the body from microbes. They can release the chromatin in their nucleus, forming characteristic web structures and trap microbes, contributing to antimicrobial defenses. The chromatin webs are known as neutrophil extracellular traps (NETs).

View Article and Find Full Text PDF

Circulating tumor cell (CTC)-based liquid biopsies provide unique opportunities for cancer diagnostics, treatment selection, and response monitoring, but even with advanced microfluidic technologies for rare cell detection the very low number of CTCs in standard 10-mL peripheral blood samples limits their clinical utility. Clinical leukapheresis can concentrate mononuclear cells from almost the entire blood volume, but such large numbers and concentrations of cells are incompatible with current rare cell enrichment technologies. Here, we describe an ultrahigh-throughput microfluidic chip, CTC-iChip, that rapidly sorts through an entire leukapheresis product of over 6 billion nucleated cells, increasing CTC isolation capacity by two orders of magnitude (86% recovery with 10 enrichment).

View Article and Find Full Text PDF

Multicellular clusters in circulation can exhibit a substantially different function and biomarker significance compared to individual cells. Notably, clusters of circulating tumor cells (CTCs) are much more effective initiators of metastasis than single CTCs, and correlate with worse patient prognoses. Measuring the cell-cell adhesion strength of CTC clusters is a critical step towards understanding their subsistence in the circulation and mechanism of elevated tumorigenicity.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are extremely rare in the blood, yet they account for metastasis. Notably, it was reported that CTC clusters (CTCCs) can be 50-100 times more metastatic than single CTCs, making them particularly salient as a liquid biopsy target. Yet they can split apart and are even rarer, complicating their recovery.

View Article and Find Full Text PDF

Inertial microfluidics (i.e., migration and focusing of particles in finite Reynolds number microchannel flows) is a passive, precise, and high-throughput method for microparticle manipulation and sorting.

View Article and Find Full Text PDF

The redundant mechanisms involved in blood coagulation are crucial for rapid hemostasis. Yet they also create challenges in blood processing in medical devices and lab-on-a-chip systems. In this work, we investigate the effects of both shear stress and hypothermic blood storage on thrombus formation in microfluidic processing.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are a treasure trove of information regarding the location, type and stage of cancer and are being pursued as both a diagnostic target and a means of guiding personalized treatment. Most isolation technologies utilize properties of the CTCs themselves such as surface antigens (e.g.

View Article and Find Full Text PDF

Microfluidic blood processing is used in a range of applications from cancer therapeutics to infectious disease diagnostics. As these applications are being translated to clinical use, processing larger volumes of blood in shorter timescales with high-reliability and robustness is becoming a pressing need. In this work, we report a scaled, label-free cell separation mechanism called non-equilibrium inertial separation array (NISA).

View Article and Find Full Text PDF

Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures.

View Article and Find Full Text PDF

We report on a microfluidic platform for culture of whole organs or tissue slices with the capability of point access reagent delivery to probe the transport of signaling events. Whole mice retina were maintained for multiple days with negative pressure applied to tightly but gently bind the bottom of the retina to a thin poly-(dimethylsiloxane) membrane, through which twelve 100 μm diameter through-holes served as fluidic access points. Staining with toluidine blue, transport of locally applied cholera toxin beta, and transient response to lipopolysaccharide in the retina demonstrated the capability of the microfluidic platform.

View Article and Find Full Text PDF

Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates.

View Article and Find Full Text PDF

A microfluidic cell co-culture platform that uses a liquid fluorocarbon oil barrier to separate cells into different culture chambers has been developed. Characterization indicates that the oil barrier could be effective for multiple days, and a maximum pressure difference between the oil barrier and aqueous media in the cell culture chamber could be as large as ~3.43 kPa before the oil barrier fails.

View Article and Find Full Text PDF

Unlabelled: Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation.

View Article and Find Full Text PDF

Inertial microfluidics has demonstrated the potential to provide a rich range of capabilities to manipulate biological fluids and particles to address various challenges in biomedical science and clinical medicine. Various microchannel geometries have been used to study the inertial focusing behavior of particles suspended in simple buffer solutions or in highly diluted blood. One aspect of inertial focusing that has not been studied is how particles suspended in whole or minimally diluted blood respond to inertial forces in microchannels.

View Article and Find Full Text PDF

A major roadblock to the vitrification of cells is the requirement of high concentrations of cryoprotectant (CPA) chemicals and the damage caused by prolonged exposure of cells to these high concentrations above the glass transition temperature. These effects are minimized with controlled CPA loading. Certain organic oils, such as soybean oil, are made of triacylglycerols and are capable of dissolving small amounts of water, a property which is enhanced significantly as temperature is increased.

View Article and Find Full Text PDF

Microfluidic-based manipulation of particles is of great interest due to the insight it provides into the physics of hydrodynamic forces. Here, we study a particle-size-dependent phenomenon based on differential inertial focusing that utilizes the flow characteristics of curved, low aspect ratio (channel width ≫ height), microfluidic channels. We report the emergence of two focusing points along the height of the channel (z-plane), where different sized particles are focused and ordered in evenly spaced trains at correspondingly different lateral positions within the channel cross-section.

View Article and Find Full Text PDF

The precise measurement of nucleation and non-equilibrium solidification are vital to fields as diverse as atmospheric science, food processing, cryopreservation and metallurgy. The emulsion technique, where the phase under study is partitioned into many droplets suspended within an immiscible continuous phase, is a powerful method for uncovering rates of nucleation and dynamics of phase changes as it isolates nucleation events to single droplets. However, averaging the behavior of many drops in a bulk emulsion leads to the loss of any drop-specific information, and drop polydispersity clouds the analysis.

View Article and Find Full Text PDF

Nonlinearity in finite-Reynolds-number flow results in particle migration transverse to fluid streamlines, producing the well-known "tubular pinch effect" in cylindrical pipes. Here we investigate these nonlinear effects in highly confined systems where the particle size approaches the channel dimensions. Experimental and numerical results reveal distinctive dynamics, including complex scaling of lift forces with channel and particle geometry.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionof8mk95k4vugjum1tpdo3pf5ujjbfepi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once