Publications by authors named "Jon Egelund"

The risk of cardiovascular disease increases significantly after menopause. We sought to assess the impact of different activity levels on cardiac structure and function in postmenopausal women. We grouped age-similar, postmenopausal women by self-reported physical activity levels over two decades.

View Article and Find Full Text PDF

The influence of the menopausal transition, with a consequent loss of estrogen, on capillary growth in response to exercise training remains unknown. In the present study, we evaluated the effect of a period of intense endurance training on skeletal muscle angiogenesis in late premenopausal and recent postmenopausal women with an age difference of <4 yr. Skeletal muscle biopsies were obtained from the thigh muscle before and after 12 wk of intense aerobic cycle training and analyzed for capillarization, fiber-type distribution, and content of vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

The menopausal transition is accompanied by changes in adipose tissue storage, leading to an android body composition associated with increased risk of type 2 diabetes and cardiovascular disease in post-menopausal women. Estrogens probably affect local adipose tissue depots differently. We investigated how menopausal status and exercise training influence adipose tissue mass, adipose tissue insulin sensitivity and adipose tissue proteins associated with lipogenesis/lipolysis and mitochondrial function.

View Article and Find Full Text PDF

Objectives: Optimized concurrent training regimes are warranted in physical training of military-, law enforcement- and rescue-personnel. This study investigated if four 15-min endurance training sessions weekly improve aerobic capacity and performance more than one 60-min endurance session weekly during the initial phase of a Basic Military Training program.

Design: A randomized training intervention study with functional and physiological tests before and after the intervention.

View Article and Find Full Text PDF

Objectives: Military-, rescue- and law-enforcement personnel require a high physical capacity including muscular strength. The present study hypothesized that 9 weeks of volume matched concurrent short frequent training sessions increases strength more efficiently than less frequent longer training sessions.

Design: A randomized training intervention study with functional and physiological tests before and after the intervention.

View Article and Find Full Text PDF

Introduction: The study evaluated the role of lifelong physical activity for leg vascular function in postmenopausal women (61 ± 1 yr).

Method: The study design was cross-sectional with three different groups based on self-reported physical activity level with regard to intensity and volume over the past decade: inactive (n = 14), moderately active (n = 12), and very active (n = 15). Endothelial-dependent and smooth muscle-dependent leg vascular function were assessed by ultrasound Doppler measurements of the femoral artery during infusion of acetylcholine (Ach), the nitric oxide (NO) donor sodium nitroprusside and the prostacyclin analog epoprostenol.

View Article and Find Full Text PDF

We examined the influence of recent menopause and aerobic exercise training in women on myocardial perfusion, left ventricular (LV) dimension, and function. Two groups ( = 14 each) of healthy late premenopausal (50.2 ± 2.

View Article and Find Full Text PDF

The axis of apolipoprotein M (apoM) and sphingosine-1-phosphate (S1P) is of importance to plasma lipid levels, endothelial function, and development of atherosclerosis. Menopause is accompanied by dyslipidemia and an increased risk of atherosclerosis, which can be lowered by exercise training. The aim of this study was to explore if effects of menopause and training are paralleled by changes in the apoM/S1P axis.

View Article and Find Full Text PDF

Key Points: Animal models have shown that beta -adrenoceptor stimulation increases protein synthesis and attenuates breakdown processes in skeletal muscle. Thus, the beta -adrenoceptor is a potential target in the treatment of disuse-, disease- and age-related muscle atrophy. In the present study, we show that a few days of oral treatment with the commonly prescribed beta -adrenoceptor agonist, salbutamol, increased skeletal muscle protein synthesis and breakdown during the first 5 h after resistance exercise in young men.

View Article and Find Full Text PDF

Aging is associated with slower skeletal muscle O uptake (V̇o) kinetics; however, the mechanisms underlying this effect of age are unclear. Also, the effects of exercise training in elderly on the initial vascular and metabolic response to exercise remain to be elucidated. We measured leg hemodynamics and oxidative metabolism in the transition from rest to steady-state exercise engaging the knee-extensor muscles in young ( n = 15, 25 ± 1 yr) and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training.

View Article and Find Full Text PDF

Coordination of vascular smooth muscle cell tone in resistance arteries plays an essential role in the regulation of peripheral resistance and overall blood pressure. Recent observations in animals have provided evidence for a coupling between adrenoceptors and Panx1 (pannexin-1) channels in the regulation of sympathetic nervous control of peripheral vascular resistance and blood pressure; however, evidence for a functional coupling in humans is lacking. We determined Panx1 expression and effects of treatment with the pharmacological Panx1 channel inhibitor probenecid on the vasoconstrictor response to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years).

View Article and Find Full Text PDF

Physical activity has the potential to offset age-related impairments in the regulation of blood flow and O delivery to the exercising muscles; however, the mechanisms underlying this effect of physical activity remain poorly understood. The present study examined the role of cGMP in training-induced adaptations in the regulation of skeletal muscle blood flow and oxidative metabolism during exercise in aging humans. We measured leg hemodynamics and oxidative metabolism during exercise engaging the knee extensor muscles in young [ n = 15, 25 ± 1 (SE) yr] and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training.

View Article and Find Full Text PDF

Objective: To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause.

Methods: Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n = 20) women were included in a 3-month high-intensity exercise training intervention. Body composition was assessed by magnetic resonance imaging and dual-energy x-ray absorptiometry, whole body glucose disposal rate (GDR) by hyperinsulinemic euglycemic clamp (40 mU/m/min), and femoral muscle glucose uptake by positron emission tomography/computed tomography, using the glucose analog fluorodeoxyglucose, expressed as estimated metabolic rate (eMR).

View Article and Find Full Text PDF

Background: We examined the role of menopause on cardiac dimensions and function and assessed the efficacy of exercise training before and after menopause.

Methods And Results: Two groups of healthy premenopausal (n=36, 49.4±0.

View Article and Find Full Text PDF

Key Points: Exercise training effectively improves vascular and skeletal muscle function; however, these effects of training may be blunted in postmenopausal women as a result of the loss of oestrogens. Accordingly, the capacity to deliver oxygen to the active muscles may also be impaired in postmenopausal women. In both premenopausal and recent postmenopausal women, exercise training was shown to improve leg vascular and skeletal muscle mitochondrial function.

View Article and Find Full Text PDF

Background: Menopause is associated with increased risk of cardiovascular disease and the causal factors have been proposed to be the loss of estrogen and the subsequent alterations of the hormonal milieu. However, which factors contribute to the deterioration of cardiometabolic health in postmenopausal women is debated as the menopausal transition is also associated with increased age and fat mass. Furthermore, indications of reduced cardiometabolic adaptations to exercise in postmenopausal women add to the adverse health profile.

View Article and Find Full Text PDF

The postmenopausal phase is associated with an accelerated rate of rise in the prevalence of vascular dysfunction and hypertension; however, the mechanisms underlying these adverse vascular changes and whether exercise training can reverse the decline in vascular function remains unclear. We examined the function of the vascular prostanoid system in matched pre- and postmenopausal women before and after 12 weeks of exercise training. Twenty premenopausal and 16 early postmenopausal (3.

View Article and Find Full Text PDF

Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not young human subjects. Here we examined whether this effect of PDE5 inhibition was related to an improved ability to blunt α-adrenergic vasoconstriction (functional sympatholysis) and/or improved efficacy of local vasodilator pathways.

View Article and Find Full Text PDF

Aging is associated with progressive loss of cardiovascular and skeletal muscle function. The impairment in physical capacity with advancing age could be related to an insufficient peripheral O2 delivery to the exercising muscles. Furthermore, the mechanisms underlying an impaired blood flow regulation remain unresolved.

View Article and Find Full Text PDF