Despite tyrosine sulfation being a relatively common post-translational modification (PTM) on the secreted proteins of higher eukaryotic organisms, there have been surprisingly few reports of this modification occurring in recombinant monoclonal antibodies (mAbs) expressed by mammalian cell lines and even less information regarding its potential impact on mAb efficacy and stability. This discrepancy is likely due to the extreme lability of this modification using many of the mass spectrometry methods typically used within the biopharmaceutical industry for PTM identification, as well as the possible misidentification as phosphorylation. Here, we identified sulfation on a single tyrosine residue located within the identical variable region sequence of a 2 + 1 bispecific mAbs heavy and heavy-heavy chains using a multi-enzymatic approach in combination with mass spectrometry analysis and examined its impact on binding, efficacy, and physical stability.
View Article and Find Full Text PDFIsotonic concentrations of inert cosolutes or excipients are routinely used in protein therapeutic formulations to minimize physical instabilities including aggregation, particulation, and precipitation that are often manifested during drug substance/product manufacture and long-term storage. Despite their prevalent use within the biopharmaceutical industry, a more detailed understanding for how excipients modulate the specific protein-protein interactions responsible for these instabilities is still needed so that informed formulation decisions can be made at the earliest stages of development when protein supply and time are limited. In the present report, subisotonic concentrations of the five common formulation excipients, sucrose, proline, sorbitol, glycerol, arginine hydrochloride, and the denaturant urea, were studied for their effect on the room temperature liquid-liquid phase separation of a model monoclonal antibody (mAb-B).
View Article and Find Full Text PDFInert co-solutes, or excipients, are often included in protein biologic formulations to adjust the tonicity of liquid dosage forms intended for subcutaneous delivery. Despite the low concentration of their use, many of these excipients alter protein-protein interactions such as dimerization and aggregation rates of high concentration monoclonal antibody (mAb) therapeutics to varying extents during long-term refrigerated clinical storage, challenging the formulation scientist to make informed excipient selections at the earliest stages of development when protein supply and time are often limited. The objectives of this study were to better understand how isotonic concentrations of excipients influence the dimerization rates of a model mAb stored at refrigerated and room temperatures and explore protein sparing biophysical methods capable of predicting this dependence.
View Article and Find Full Text PDFA process for the reduction of residual solvents in spray-dried poly(lactide-co-glycolide) (PLGA)-darbepoetin alfa microparticles was developed using carbon dioxide (CO(2)) as an extraction solvent. CO(2) was investigated in two phase states, liquid and gas. Detrimental effects on encapsulated protein integrity and microparticle morphology were observed with liquid CO(2) exposure.
View Article and Find Full Text PDF