Publications by authors named "Jon Come"

Antibiotic resistance, especially in multidrug-resistant ESKAPE pathogens, remains a worldwide problem. Combination antimicrobial therapies may be an important strategy to overcome resistance and broaden the spectrum of existing antibiotics. However, this strategy is limited by the ability to efficiently screen large combinatorial chemical spaces.

View Article and Find Full Text PDF

In our efforts to identify novel small molecule inhibitors for the treatment of adrenoleukodystrophy (ALD), we conducted a high-throughput radiometric screen for inhibitors of elongation of very long chain fatty acid 1 (ELOVL1) enzyme. We developed a series of highly potent, central nervous system (CNS)-penetrant pyrimidine ether-based compounds with favorable pharmacokinetics culminating in compound . Compound is a selective inhibitor of ELOVL1, reducing C26:0 VLCFA synthesis in ALD patient fibroblasts and lymphocytes in vitro.

View Article and Find Full Text PDF

Accumulation of very long chain fatty acids (VLCFAs) due to defects in ATP binding cassette protein D1 (ABCD1) is thought to underlie the pathologies observed in adrenoleukodystrophy (ALD). Pursuing a substrate reduction approach based on the inhibition of elongation of very long chain fatty acid 1 enzyme (ELOVL1), we explored a series of thiazole amides that evolved into compound ─a highly potent, central nervous system (CNS)-penetrant compound with favorable pharmacokinetics. Compound selectively inhibits ELOVL1, reducing C26:0 VLCFA synthesis in ALD patient fibroblasts, lymphocytes, and microglia.

View Article and Find Full Text PDF

Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes that control a wide variety of cellular functions such as cell growth, proliferation, differentiation, motility, survival, and intracellular trafficking. PI3Kγ plays a critical role in mediating leukocyte chemotaxis as well as mast cell degranulation, making it a potentially interesting target for autoimmune and inflammatory diseases. We previously disclosed a novel series of PI3Kγ inhibitors derived from a benzothiazole core.

View Article and Find Full Text PDF

Rho kinase (ROCK) inhibitors are of therapeutic value for the treatment of disorders such as hypertension and glaucoma, and potentially of wider use against diseases such as cancer and multiple sclerosis. We previously reported a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Here we extend the SAR exploration of the 7-azaindole series to identify leads for further evaluation.

View Article and Find Full Text PDF

Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.

View Article and Find Full Text PDF

The lipid kinase phosphoinositide 3-kinase γ (PI3Kγ) has attracted attention as a potential target to treat a variety of autoimmune disorders, including multiple sclerosis, due to its role in immune modulation and microglial activation. By minimizing the number of hydrogen bond donors while targeting a previously uncovered selectivity pocket adjacent to the ATP binding site of PI3Kγ, we discovered a series of azaisoindolinones as selective, brain penetrant inhibitors of PI3Kγ. This ultimately led to the discovery of 16, an orally bioavailable compound that showed efficacy in murine experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis.

View Article and Find Full Text PDF

A series of high affinity second-generation thiazolopiperidine inhibitors of PI3Kγ were designed based on some general observations around lipid kinase structure. Optimization of the alkylimidazole group led to inhibitors with higher levels of PI3Kγ selectivity. Additional insights into PI3K isoform selectivity related to sequence differences in a known distal hydrophobic pocket are also described.

View Article and Find Full Text PDF

Constitutive activation of the EPO/JAK2 signaling cascade has recently been implicated in a variety of myeloproliferative disorders including polycythemia vera, essential thrombocythemia and myelofibrosis. In an effort to uncover therapeutic potential of blocking the EPO/JAK2 signaling cascade, we sought to discover selective inhibitors that block the kinase activity of JAK2. Herein, we describe the discovery and structure based optimization of a novel series of 2-amino-pyrazolo[1,5-a]pyrimidines that exhibit potent inhibition of JAK2.

View Article and Find Full Text PDF

We report herein the design and synthesis of 4-(benzimidazol-2-yl)-1,2,5-oxadiazol-3-amine derivatives as inhibitors of p70S6 kinase. Screening hits containing the 4-(benzimidazol-2-yl)-1,2,5-oxadiazol-3-ylamine scaffold were optimized for p70S6K potency and selectivity against related kinases. Structure-based design employing an active site homology model derived from PKA led to the preparation of benzimidazole 5-substituted compounds 26 and 27 as highly potent inhibitors (K(i) <1nM) of p70S6K, with >100-fold selectivity against PKA, ROCK and GSK3.

View Article and Find Full Text PDF

A series of potent thiol-containing aryl sulfone TACE inhibitors were designed and synthesized. The SAR and MMP selectivity of the series were investigated. In particular, compound 8b showed excellent in vitro potency against the isolated enzyme and good selectivity over MMP-2, -7, -8, -9, and -13.

View Article and Find Full Text PDF

A series of potent thiol-containing aryl sulfonamide TACE inhibitors was designed and synthesized. The SAR and MMP selectivity of the series were investigated. In particular, compound 4b has shown excellent in vitro potency against the isolated TACE enzyme and good selectivity over MMP-2, -7, -8, -9, and -13.

View Article and Find Full Text PDF

In this study, we explored the application of a yeast three-hybrid (Y3H)-based compound/protein display system to scanning the proteome for targets of kinase inhibitors. Various known cyclin-dependent kinase (CDK) inhibitors, including purine and indenopyrazole analogs, were displayed in the form of methotrexate-based hybrid ligands and deployed in cDNA library or yeast cell array-based screening formats. For all inhibitors, known cell cycle CDKs as well as novel candidate CDK-like and/or CDK-unrelated kinase targets could be identified, many of which were independently confirmed using secondary enzyme assays and affinity chromatography.

View Article and Find Full Text PDF