The hollow fiber filter is the primary cell-retention device used in high-density perfusion cell culture and often used in an alternating tangential flow (ATF) configuration. The limited commercially available diaphragm pumps for ATF prevent utilization of vertical space when scaling beyond 500 L. Stacking hollow fiber filters coupled with viscous cell culture imposes vacuum pressure exceeding facility capabilities.
View Article and Find Full Text PDFAs the need for higher volumetric productivity in biomanufacturing grows, biopharmaceutical companies are increasingly investing in a perfusion cell culture process, most commonly one that uses a hollow fiber filter as the cell retention device. A current challenge with using hollow fiber filters is fouling of the membrane, which reduces product sieving and can increase transmembrane pressure (TMP) past process limitations. In this work, the impact of hollow fiber filter geometries on product sieving and hydraulic membrane resistance profiles is evaluated in a tangential flow filtration (TFF) perfusion system.
View Article and Find Full Text PDFNext-generation manufacturing (NGM) has evolved over the past decade to a point where large biopharmaceutical organizations are making large investments in the technology and considering implementation in clinical and commercial processes. There are many well-considered reasons to implement NGM. For the most part, organizations will not fund NGM unless the implementation benefits the funding organization by providing reduced costs, reduced time, or additional needed capabilities.
View Article and Find Full Text PDFIn the production of biopharmaceuticals depth filters followed by sterile filters are often employed to remove residual cell debris present in the feed stream. In the back drop of a global pandemic, supply chains associated with the production of biopharmaceuticals have been constrained. These constraints have limited the available amount of depth filters for the manufacture of biologics.
View Article and Find Full Text PDFDue to the favorable attributes of Chinese hamster ovary (CHO) cells for therapeutic proteins and antibodies biomanufacturing, companies generate proprietary cells with desirable phenotypes. One key attribute is the ability to stably express multi-gram per liter titers in chemically defined media. Cell, media, and feed diversity has limited community efforts to translate knowledge.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2021
An 8 ton per year manufacturing facility is described based on the framework for integrated and continuous bioprocessing (ICB) common to all known biopharmaceutical implementations. While the output of this plant rivals some of the largest fed-batch plants in the world, the equipment inside the plant is relatively small: the plant consists of four 2000 L single-use bioreactors and has a maximum flow rate of 13 L/min. The equipment and facility for the ICB framework is described in sufficient detail to allow biopharmaceutical companies, vendors, contract manufacturers to build or buy their own systems.
View Article and Find Full Text PDFAn ambitious 10-year collaborative program is described to invent, design, demonstrate, and support commercialization of integrated biopharmaceutical manufacturing technology intended to transform the industry. Our goal is to enable improved control, robustness, and security of supply, dramatically reduced capital and operating cost, flexibility to supply an extremely diverse and changing portfolio of products in the face of uncertainty and changing demand, and faster product development and supply chain velocity, with sustainable raw materials, components, and energy use. The program is organized into workstreams focused on end-to-end control strategy, equipment flexibility, next generation technology, sustainability, and a physical test bed to evaluate and demonstrate the technologies that are developed.
View Article and Find Full Text PDFThis study aims to benchmark and analyze the process development and manufacturing costs across the biopharmaceutical drug development cycle and their contribution to overall research and development (R&D) costs. This was achieved with a biopharmaceutical drug development lifecycle cost model that captured the costs, durations, risks and interdependencies of the clinical, process development and manufacturing activities. The budgets needed for process development and manufacturing at each phase of development to ensure a market success each year were estimated.
View Article and Find Full Text PDFA continuous viral inactivation (CVI) chamber has been designed to operate with acceptable residence time distribution (RTD) characteristics. However, altering the CVI's geometry and operation to accommodate the scale was not obvious. In this work, we elucidate the influence of Dean vortices and leverage the transition into the weak turbulent regime to establish relationships between input variables and process outputs.
View Article and Find Full Text PDFA novel, alternative intensified cell culture process comprised of a linked bioreactor system is presented. An N-1 perfusion bioreactor maintained cells in a highly proliferative state and provided a continuous inoculum source to a second bioreactor operating as a continuous-flow stirred-tank reactor (CSTR). An initial study evaluated multiple system steady-states by varying N-1 steady-state viable cell densities, N-1 to CSTR working volume ratios, and CSTR dilution rates.
View Article and Find Full Text PDFAlternating tangential flow (ATF) filtration has been successfully adopted as a low shear cell separation device in many perfusion-based processes. The reverse flow per cycle is used to minimize fouling compared with tangential flow filtration. Currently, modeling of the ATF system is based on empirically derived formulas, leading to oversimplification of model parameters.
View Article and Find Full Text PDFTangential flow filtration (TFF) and alternating tangential flow (ATF) filtration technologies using hollow fiber membranes are commonly utilized in perfusion cell culture for the production of monoclonal antibodies; however, product retention remains a known and common problem with these systems. To address this issue, commercially available hollow fibers ranging from several hundred kilo-Daltons (kDa) to 0.65 μm in nominal pore size are tested and are all demonstrated to undergo moderate to severe product retention.
View Article and Find Full Text PDFWe propose a standard protocol for integrity testing the residence-time distribution (RTD) in a "Jig in a Box" design (JIB)-a previously described tortuous-path, tubular, low-pH, continuous viral inactivation reactor, ensuring that biopharmaceutical products will be incubated for the required minimum residence time, t . t is the time by which just 0.001% of the total product containing virus has exited the incubation chamber (i.
View Article and Find Full Text PDFInsufficient mixing in laminar flow reactors due to diffusion-dominated flow limits their use in applications where narrow residence time distribution (RTD) is required. The aim of this study was to design and characterize a laminar flow (Re 187.7-375.
View Article and Find Full Text PDFThis paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete-event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision-making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps.
View Article and Find Full Text PDFWe designed, built or 3D printed, and screened tubular reactors that minimize axial dispersion to serve as incubation chambers for continuous virus inactivation of biological products. Empirical residence time distribution data were used to derive each tubular design's volume equivalent to a theoretical plate (VETP) values at a various process flow rates. One design, the Jig in a Box (JIB), yielded the lowest VETP, indicating optimal radial mixing and minimal axial dispersion.
View Article and Find Full Text PDFAchievement of a robust and scalable cell retention device remains a challenge in perfusion systems. Of the two filtration systems commonly used, tangential flow filtration (TFF) systems often have an inferior product sieving profile compared to alternating tangential flow filtration (ATF) systems, which is typically attributed to the ATF's unique alternating flow. Here, we demonstrate that observed performance differences between the two systems are a function of cell lysis and not the alternating flow as previously thought.
View Article and Find Full Text PDFA significant consequence of scaling up production of high titer monoclonal antibody (mAb) processes in existing facilities is the generation of in-process pools that exceed the capacity of storage vessels. A semi-continuous downstream process where columns and filters are linked and operated in tandem would eliminate the need for intermediate holding tanks. This study is a bench-scale demonstration of the feasibility of a tandem process for the purification of mAbs employing an affinity Protein A capture step, followed by a flow-through anion-exchange (AEX) step with the possibility of adding an in-line virus filtration step (VF).
View Article and Find Full Text PDFThis paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach.
View Article and Find Full Text PDFIon-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development.
View Article and Find Full Text PDFHigh-throughput screening (HTS) of chromatography resins for identifying optimal protein purification conditions is becoming an integral part of industrial process development. In this work, ceramic hydroxyapatite (cHA) chromatography of 15 humanized monoclonal antibodies (mAbs) was examined by HTS. MAb binding, as quantified by partition coefficient (K(p)), was measured under 92 combinations of sodium chloride, phosphate, and pH.
View Article and Find Full Text PDF