Publications by authors named "Jon Camp"

Background And Purpose: Progressive MS is typically heralded by a myelopathic pattern of asymmetric progressive motor weakness. Focal individual "critical" demyelinating spinal cord lesions anatomically associated with progressive motor impairment may be a compelling explanation for this clinical presentation as described in progressive solitary sclerosis (single CNS demyelinating lesion), progressive demyelination with highly restricted MR imaging lesion burden (2-5 total CNS demyelinating lesions; progressive paucisclerotic MS), and progressive, exclusively unilateral hemi- or monoparetic MS (>5 CNS demyelinating progressive unilateral hemi- or monoparetic MS [PUHMS] lesions). Critical demyelinating lesions appear strikingly similar across these cohorts, and we describe their specific spinal cord MR imaging characteristics.

View Article and Find Full Text PDF

Purpose: To develop a model to predict corneal improvement after Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial corneal dystrophy (FECD) from Scheimpflug tomography.

Design: Cross-sectional study.

Participants: Forty-eight eyes (derivation group) and 45 eyes (validation group) with a range of severity of FECD undergoing DMEK.

View Article and Find Full Text PDF

Flow cytometric (FC) immunophenotyping is critical but time-consuming in diagnosing minimal residual disease (MRD). We evaluated whether human-in-the-loop artificial intelligence (AI) could improve the efficiency of clinical laboratories in detecting MRD in chronic lymphocytic leukemia (CLL). We developed deep neural networks (DNN) that were trained on a 10-color CLL MRD panel from treated CLL patients, including DNN trained on the full cohort of 202 patients (F-DNN) and DNN trained on 138 patients with low-event cases (MRD < 1000 events) (L-DNN).

View Article and Find Full Text PDF

Kidney stones are a common urologic condition with a high amount of recurrence. Recurrence depends on a multitude of factors the incidence of precursors to kidney stones, plugs, and plaques. One method of characterising the stone precursors is endoscopic assessment, though it is manual and time-consuming.

View Article and Find Full Text PDF

Central quantitative computed tomography (QCT) is increasingly used in clinical trials and practice to assess bone mass or strength and to evaluate longitudinal changes in response to drug treatment. Current studies utilize single-energy (SE) QCT scans, which may be confounded both by the amount of bone marrow fat at baseline and changes in marrow fat over time. However, the extent to which marrow fat changes either underestimate volumetric BMD (vBMD) measurements at baseline or under-/overestimate longitudinal changes in vivo in humans remains unclear.

View Article and Find Full Text PDF

Background: Approximately 16-24% of postmenopausal women are affected by vertebral fractures, negatively affecting their quality of life. Trabecular and cortical bones in vertebrae decline differently with age, thus having a distinct impact on vertebral failure loads. The purpose of this study was to investigate the effect of trabecular and cortical volumetric bone mineral density loss over time on estimated failure loads; and to evaluate the effect of sex and age.

View Article and Find Full Text PDF

In spite of significant efforts to improve image-guided ablation therapy, a large number of patients undergoing ablation therapy to treat cardiac arrhythmic conditions require repeat procedures. The delivery of insufficient thermal dose is a significant contributor to incomplete tissue ablation, in turn leading to the arrhythmia recurrence. Ongoing research efforts aim to better characterize and visualize RF delivery to monitor the induced tissue damage during therapy.

View Article and Find Full Text PDF

The delivery of insufficient thermal dose is a significant contributor to incomplete tissue ablation and leads to arrhythmia recurrence and a large number of patients requiring repeat procedures. In concert with ongoing research efforts aimed at better characterizing the RF energy delivery, here we propose a method that entails modeling and visualization of the lesions in real time. The described image-based ablation model relies on classical heat transfer principles to estimate tissue temperature in response to the ablation parameters, tissue properties, and duration.

View Article and Find Full Text PDF

Background & Aims: Gastroparesis is a complication of diabetes characterized by delayed emptying of stomach contents and accompanied by early satiety, nausea, vomiting, and pain. No safe and reliable treatments are available. Interleukin 10 (IL10) activates the M2 cytoprotective phenotype of macrophages and induces expression of heme oxygenase 1 (HO1) protein.

View Article and Find Full Text PDF

Background: Since 1972, patients with large nasal perforations, who were symptomatic, and who were not candidates for surgery, had the option of custom prosthetic closure at Mayo Clinic. Although septal prostheses have helped many patients, 27% of pre-1982 patients chose not to keep the prosthesis in place. Two-dimensional computed tomography (CT) sizing resulted in more of the patients choosing to retain the prosthesis.

View Article and Find Full Text PDF

The spine is the most common site for secondary bone metastases, and clinical management for fractures is based on size and geometry of the defect. About 75% of the bone needs to be damaged before lesions are detectable, so clinical tools should measure changes in both geometry and material properties. We have developed an automated, user-friendly, Spine Cancer Assessment (SCA) image-based analysis method that builds on a platform designed for clinical practice providing failure characteristics of vertebrae.

View Article and Find Full Text PDF

Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed.

View Article and Find Full Text PDF

Osteoporosis is characterized by bony material loss and decreased bone strength leading to a significant increase in fracture risk. Patient-specific quantitative computed tomography (QCT) finite element (FE) models may be used to predict fracture under physiological loading. Material properties for the FE models used to predict fracture are obtained by converting grayscale values from the CT into volumetric bone mineral density (vBMD) using calibration phantoms.

View Article and Find Full Text PDF

Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well.

View Article and Find Full Text PDF

Purpose: To examine specific prostate and urethra dimensions and prostate shape to facilitate the design of a transurethral ultrasonographic imaging device.

Methods And Materials: Computed tomographic (CT) data sets were retrospectively evaluated from 191 patients who underwent permanent prostate brachytherapy at our institution. The prostate, rectum, urethra, and bladder were each segmented with imaging software.

View Article and Find Full Text PDF

Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure.

View Article and Find Full Text PDF

Despite extensive efforts to enhance catheter navigation, limited research has been done to visualize and monitor the tissue lesions created during ablation in the attempt to provide feedback for effective therapy. We propose a technique to visualize the temperature distribution and extent of induced tissue injury via an image-based model that uses physiological tissue parameters and relies on heat transfer principles to characterize lesion progression in near real time. The model was evaluated both numerically and experimentally using ex vivo bovine muscle samples while emulating a clinically relevant ablation protocol.

View Article and Find Full Text PDF

A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study.

View Article and Find Full Text PDF

Background: We aimed to test the hypothesis that three-dimensional (3D) volume-based scoring of computed tomography (CT) images of the paranasal sinuses was superior to Lund-Mackay CT scoring of disease severity in chronic rhinosinusitis (CRS). We determined correlation between changes in CT scores (using each scoring system) with changes in other measures of disease severity (symptoms, endoscopic scoring, and quality of life) in patients with CRS treated with triamcinolone.

Methods: The study group comprised 48 adult subjects with CRS.

View Article and Find Full Text PDF

In the context of image-guided left atrial fibrillation therapy, relatively very little work has been done to consider the changes that occur in the tissue during ablation in order to monitor therapy delivery. Here we describe a technique to predict the lesion progression and monitor the radio-frequency energy delivery via a thermal ablation model that uses heat transfer principles to estimate the tissue temperature distribution and resulting lesion. A preliminary evaluation of the model was conducted in ex vivo skeletal beef muscle tissue while emulating a clinically relevant tissue ablation protocol.

View Article and Find Full Text PDF

In spite of significant efforts to enhance guidance for catheter navigation, limited research has been conducted to consider the changes that occur in the tissue during ablation as means to provide useful feedback on the progression of therapy delivery. We propose a technique to visualize lesion progression and monitor the effects of the RF energy delivery using a surrogate thermal ablation model. The model incorporates both physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution in the tissue and geometry of the generated lesion in near real time.

View Article and Find Full Text PDF

Background: The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics.

Methods And Findings: We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD.

View Article and Find Full Text PDF

Advanced bone imaging with quantitative computed tomography (QCT) has had limited success in significantly improving fracture prediction beyond standard areal bone mineral density (aBMD) measurements. Thus, we examined whether a machine learning paradigm, gradient boosting machine (GBM) modeling, which can incorporate diverse measurements of bone density and geometry from central QCT imaging and of bone microstructure from high-resolution peripheral QCT imaging, can improve fracture prediction. We studied two cohorts of postmenopausal women: 105 with and 99 without distal forearm fractures (Distal Forearm Cohort) and 40 with at least one grade 2 or 3 vertebral deformity and 78 with no vertebral fracture (Vertebral Cohort).

View Article and Find Full Text PDF

Because they are not reliably discriminated by areal bone mineral density (aBMD) measurements, it is unclear whether minimal vertebral deformities represent early osteoporotic fractures. To address this, we compared 90 postmenopausal women with no deformity (controls) with 142 women with one or more semiquantitative grade 1 (mild) deformities and 51 women with any grade 2-3 (moderate/severe) deformities. aBMD was measured by dual-energy X-ray absorptiometry (DXA), lumbar spine volumetric bone mineral density (vBMD) and geometry by quantitative computed tomography (QCT), bone microstructure by high-resolution peripheral QCT at the radius (HRpQCT), and vertebral compressive strength and load-to-strength ratio by finite-element analysis (FEA) of lumbar spine QCT images.

View Article and Find Full Text PDF

Background: Simulators for surgical education are in high demand due to new curriculum requirements for surgical residency accreditation. Our aim was to assess the usability and perceived effectiveness of a three-dimensional (3-D) pelvic anatomy teaching module derived from human magnetic resonance and computerized tomography images.

Methods: A convenience sample of medical students and surgery residents was surveyed.

View Article and Find Full Text PDF