Publications by authors named "Jon Brown"

Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tau) and P301L mutant 0N4R tau (tau) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss.

View Article and Find Full Text PDF

Accumulation of tau is observed in dementia, with human tau displaying 6 isoforms grouped by whether they display either 3 or 4 C-terminal repeat domains (3R or 4R) and exhibit no (0N), one (1N) or two (2N) N terminal repeats. Overexpression of 4R0N-tau in rat hippocampal slices enhanced the L-type calcium (Ca) current-dependent components of the medium and slow afterhyperpolarizations (AHPs). Overexpression of both 4R0N-tau and 4R2N-tau augmented Ca1.

View Article and Find Full Text PDF

Aggregation of the microtubule-associated protein tau into paired helical filaments (PHFs) and neurofibrillary tangles is a defining characteristic of Alzheimer's Disease. Various plant polyphenols disrupt tau aggregation but display poor bioavailability and low potency, challenging their therapeutic translation. We previously reported that oral administration of the flavonoid (-)-epicatechin (EC) reduced Amyloid-β (Aβ) plaque pathology in APP/PS1 transgenic mice.

View Article and Find Full Text PDF

The dynamics of the resting brain exhibit transitions between a small number of discrete networks, each remaining stable for tens to hundreds of milliseconds. These functional microstates are thought to be the building blocks of spontaneous consciousness. The electroencephalogram (EEG) is a useful tool for imaging microstates, and EEG microstate analysis can potentially give insight into altered brain dynamics underpinning cognitive impairment in disorders such as Alzheimer's disease (AD).

View Article and Find Full Text PDF

Recently, increased neuronal activity in nucleus reuniens (Re) has been linked to hyperexcitability within hippocampal-thalamo-cortical networks in the J20 mouse model of amyloidopathy. Here in vitro whole-cell patch clamp recordings were used to compare old pathology-bearing J20 mice and wild-type controls to examine whether altered intrinsic electrophysiological properties could contribute to the amyloidopathy-associated Re hyperactivity. A greater proportion of Re neurons display hyperpolarized membrane potentials in J20 mice without changes to the incidence or frequency of spontaneous action potentials.

View Article and Find Full Text PDF

Objectives: Functional and structural disconnection of the brain is a prevailing hypothesis to explain cognitive impairment in Alzheimer's Disease (AD). We aim to understand the link between alterations to networks and cognitive impairment using functional connectivity analysis and modelling.

Methods: EEG was recorded from 21 AD patients and 26 controls, mapped into source space using eLORETA, and functional connectivity was calculated using phase locking factor.

View Article and Find Full Text PDF

Action potential firing in hippocampal pyramidal neurons is regulated by generation of an afterhyperpolarization (AHP). Three phases of AHP are recognized, with the fast AHP regulating action potential firing at the onset of a burst and the medium and slow AHPs supressing action potential firing over hundreds of milliseconds and seconds, respectively. Activation of β-adrenergic receptors suppresses the slow AHP by a protein kinase A-dependent pathway.

View Article and Find Full Text PDF

The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory.

View Article and Find Full Text PDF

Intrinsic neuronal excitability has been reported to change during normal aging. The bed nucleus of the stria terminalis (BNST), a limbic forebrain structure, is involved in fear, stress and anxiety; behavioral features that exhibit age-dependent properties. To examine the effect of aging on intrinsic neuronal properties in BNST we compared patch clamp recordings from cohorts of female mice at two ages, 3-4 months (Young) and 29-30 months (Aged) focusing on 2 types of BNST neurons.

View Article and Find Full Text PDF

The accumulation of cleaved tau fragments in the brain is associated with several tauopathies. For this reason, we recently developed a transgenic mouse that selectively accumulates a C-Terminal 35 kDa human tau fragment (Tau35). These animals develop progressive motor and spatial memory impairment, paralleled by increased hippocampal glycogen synthase kinase 3β activity.

View Article and Find Full Text PDF

Chronic cerebral hypoperfusion is a key mechanism associated with white matter disruption in cerebral vascular disease and dementia. In a mouse model relevant to studying cerebral vascular disease, we have previously shown that cerebral hypoperfusion disrupts axon-glial integrity and the distribution of key paranodal and internodal proteins in subcortical myelinated axons. This disruption of myelinated axons is accompanied by increased microglia and cognitive decline.

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal subtypes and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time courses of functional maturation that are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to postsynaptic receptor maturation. Here, we describe a simple protocol that employs the sequential addition of just two supplemented media that have been formulated to separate the two key phases of neural differentiation, the neurogenesis and synaptogenesis, each characterized by different signaling requirements.

View Article and Find Full Text PDF

Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ) species in the brain's parenchyma and is a key histopathological hallmark of Alzheimer's disease (AD). Work on transgenic mice that overexpress Aβ suggests that elevated Aβ levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability (IE) of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene) compared to their age-matched wild-type littermate controls.

View Article and Find Full Text PDF

Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal-PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal-PFC NMDAR-mediated synaptic transmission.

View Article and Find Full Text PDF
Article Synopsis
  • The accumulation of beta-amyloid peptides is a key feature of Alzheimer's disease (AD) and is linked to increased seizure activity in patients.
  • Recent studies in transgenic mice indicate that elevated Aβ levels can lead to changes in the electrical properties of neurons, correlating with the higher incidence of seizures.
  • In this study, treatment with soluble Aβ 1-42 did not affect certain intrinsic properties of hippocampal neurons but did lead to heightened excitability and altered action potential characteristics, suggesting a possible connection between amyloid buildup and seizure susceptibility in AD.
View Article and Find Full Text PDF

The activation of small conductance calcium-dependent (SK) channels regulates membrane excitability by causing membrane hyperpolarization. Three subtypes (SK1-3) have been cloned, with each subtype expressed within the nervous system. The locations of channel subunits overlap, with SK1 and SK2 subunits often expressed in the same brain region.

View Article and Find Full Text PDF

The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins.

View Article and Find Full Text PDF

Cold therapy has long been the number one self-care treatment employed for migraine without aura and the second most common for migraine with aura, yet its mechanism remains elusive. In this study, a mechanism by which this time-tested therapy works is proposed (by cooling the blood passing through intracranial vessels) in an attempt to further elucidate its beneficial effects. The study is designed as a randomized, controlled, crossover clinical trial utilizing an adjustable wrap containing two freezable ice packs targeting the carotid arteries at the neck, where they come close to the skin surface.

View Article and Find Full Text PDF

BACE1 is the rate-limiting enzyme that cleaves amyloid precursor protein (APP) to produce the amyloid β peptides that accumulate in Alzheimer's disease (AD). BACE1, which is elevated in AD patients and APP transgenic mice, also cleaves the β2-subunit of voltage-gated sodium channels (Navβ2). Although increased BACE1 levels are associated with Navβ2 cleavage in AD patients, whether Navβ2 cleavage occurs in APP mice had not yet been examined.

View Article and Find Full Text PDF

Voltage-sensitive calcium channels (VSCC) are vital to the normal physiology of many cell types, including neurones, skeletal, cardiac and smooth muscle cells, heart pacemaker tissue and endocrine cells. Whole-cell recording is a functional electrophysiological assay that allows real-time measurement of macroscopic VSCC activity at the level of single cells. Using this technique, it is possible to probe the molecular physiology, pharmacology, and biophysics of VSCC proteins with a level of precision rarely surpassed in cell biological studies.

View Article and Find Full Text PDF

Cognitive decline occurs during normal aging and is likely to be reflected in the neurophysiological properties of neural circuits with key roles in cognition, for example those of the limbic system. To identify candidate neurophysiological changes we used patch clamp methods to compare the intrinsic excitability properties of hippocampal CA1 pyramidal neurons of mature adult (8-10 month) and aged (22-24 month) mice. Resting potential, input resistance, and the "sag" observed on injection of hyperpolarizing current were not age-dependent.

View Article and Find Full Text PDF

Alpha7 nicotinic acetylcholine receptors (α7 nAChR) are widely distributed throughout the central nervous system and are found at particularly high levels in the hippocampus and cortex. Several lines of evidence indicate that pharmacological enhancement of α7 nAChRs function could be a potential therapeutic route to alleviate disease-related cognitive deficits. A recent pharmacological approach adopted to increase α7 nAChR activity has been to identify selective positive allosteric modulators (PAMs).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a major cause of disability in the elderly. The formation of senile plaques and neurofibrillary tangles are the main hallmarks of the disorder, whereas synaptic loss best correlates to the progressive cognitive decline. Interestingly, some of the proteins involved in these pathophysiological processes have been reported to be subject to posttranslational modification by ubiquitin and/or the small ubiquitin-like modifier (SUMO).

View Article and Find Full Text PDF