Publications by authors named "Jon Beadell"

Aim: Lower species diversity, increased population densities and ecological niche enlargement are common characteristics of island faunas. However it remains to be determined if they extend to the parasite community. We tested if Haemosporidia parasite pressure varies between islands and the mainland with two different levels of analysis: i) at the host community level, and ii) with paired-species comparisons between islands and the mainland.

View Article and Find Full Text PDF

Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis (sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes.

View Article and Find Full Text PDF

The genetic diversity of haematozoan parasites in island avifauna has only recently begun to be explored, despite the potential insight that these data can provide into the history of association between hosts and parasites and the possible threat posed to island endemics. We used mitochondrial DNA sequencing to characterize the diversity of 2 genera of vector-mediated parasites (Plasmodium and Haemoproteus) in avian blood samples from the western Indian Ocean region and explored their relationship with parasites from continental Africa. We detected infections in 68 out of 150 (45·3%) individuals and cytochrome b sequences identified 9 genetically distinct lineages of Plasmodium spp.

View Article and Find Full Text PDF

Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda.

View Article and Find Full Text PDF

Background: Glossina pallidipes has been implicated in the spread of sleeping sickness from southeastern Uganda into Kenya. Recent studies indicated resurgence of G. pallidipes in Lambwe Valley and southeastern Uganda after what were deemed to be effective control efforts.

View Article and Find Full Text PDF

Background: Glossina fuscipes fuscipes is the main vector of human and animal trypanosomiasis in Africa, particularly in Uganda. Attempts to control/eradicate this species using biological methods require knowledge of its reproductive biology. An important aspect is the number of times a female mates in the wild as this influences the effective population size and may constitute a critical factor in determining the success of control methods.

View Article and Find Full Text PDF

This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp.

View Article and Find Full Text PDF

Background: Characterizing the evolutionary relationships and population structure of parasites can provide important insights into the epidemiology of human disease.

Methodology/principal Findings: We examined 142 isolates of Trypanosoma brucei from all over sub-Saharan Africa using three distinct classes of genetic markers (kinetoplast CO1 sequence, nuclear SRA gene sequence, eight nuclear microsatellites) to clarify the evolutionary history of Trypanosoma brucei rhodesiense (Tbr) and T. b.

View Article and Find Full Text PDF

Background: Glossina fuscipes, a riverine species of tsetse, is the major vector of human African trypanosomiasis (HAT) in sub-Saharan Africa. Understanding the population dynamics, and specifically the temporal stability, of G. fuscipes will be important for informing vector control activities.

View Article and Find Full Text PDF

Background: Glossina fuscipes fuscipes, a riverine species of tsetse, is the main vector of both human and animal trypanosomiasis in Uganda. Successful implementation of vector control will require establishing an appropriate geographical scale for these activities. Population genetics can help to resolve this issue by characterizing the extent of linkage among apparently isolated groups of tsetse.

View Article and Find Full Text PDF

Previous studies have examined germ-line mutations to infer the processes that generate and maintain variability in microsatellite loci. Few studies, however, have examined patterns to infer processes that act on microsatellite loci over evolutionary time. Here, we examine changes in 8 dinucleotide loci across the adaptive radiation of Hawaiian honeycreepers.

View Article and Find Full Text PDF

The host specificity of blood parasites recovered from a survey of 527 birds in Cameroon and Gabon was examined at several levels within an evolutionary framework. Unique mitochondrial lineages of Haemoproteus were recovered from an average of 1.3 host species (maximum=3) and 1.

View Article and Find Full Text PDF

Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts.

View Article and Find Full Text PDF

The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species.

View Article and Find Full Text PDF

The success of introduced species is frequently explained by their escape from natural enemies in the introduced region. We tested the enemy release hypothesis with respect to two well studied blood parasite genera (Plasmodium and Haemoproteus) in native and six introduced populations of the common myna Acridotheres tristis. Not all comparisons of introduced populations to the native population were consistent with expectations of the enemy release hypothesis.

View Article and Find Full Text PDF

We describe a reliable and relatively inexpensive method for detecting and differentiating between the commonly studied avian blood parasite genera Haemoproteus, Plasmodium, and Leucocytozoon. The assay takes advantage of a Haemoproteus-specific restriction site identified by sequencing full mitochondrial genomes from two Haemoproteus and three Plasmodium lineages and an adjacent, genus-specific restriction site identified in Leucocytozoon spp. The assay was sensitive to simulated parasitemias of approximately 8 x 10(-6) per erythrocyte and was 100% accurate in differentiating between parasite genera isolated from a broad geographical and taxonomic sampling of infected hosts.

View Article and Find Full Text PDF

The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428).

View Article and Find Full Text PDF