Publications by authors named "Jon Basurko"

The techniques that allow one to estimate measurements at the unsensed points of a system are known as virtual sensing. These techniques are useful for the implementation of condition monitoring systems in industrial equipment subjected to high cyclic loads that can cause fatigue damage, such as industrial presses. In this article, three different virtual sensing algorithms for strain estimation are tested using real measurement data obtained from a scaled bed press prototype: two deterministic algorithms (Direct Strain Observer and Least-Squares Strain Estimation) and one stochastic algorithm (Static Strain Kalman Filter).

View Article and Find Full Text PDF

Virtual sensing is the process of using available data from real sensors in combination with a model of the system to obtain estimated data from unmeasured points. In this article, different strain virtual sensing algorithms are tested using real sensor data, under unmeasured different forces applied in different directions. Stochastic algorithms (Kalman filter and augmented Kalman filter) and deterministic algorithms (least-squares strain estimation) are tested with different input sensor configurations.

View Article and Find Full Text PDF