Publications by authors named "Jon A Moore"

Oil and gas extraction activities occur across the globe, yet species-specific toxicological information on the biological and ecological impacts of exposure to petrochemicals is lacking for the vast majority of marine species. To help prioritize species for recovery, mitigation, and conservation in light of significant toxicological data gaps, a trait-based petrochemical vulnerability index was developed and applied to the more than 1700 marine fishes present across the entire Gulf of Mexico, including all known bony fishes, sharks, rays and chimaeras. Using life history and other traits related to likelihood of exposure, physiological sensitivity to exposure, and population resiliency, final calculated petrochemical vulnerability scores can be used to provide information on the relative sensitivity, or resilience, of marine fish populations across the Gulf of Mexico to oil and gas activities.

View Article and Find Full Text PDF

The gopher tortoise (), a keystone species, is declining throughout its geographic range. Lack of knowledge with respect to the potential infectious diseases present within wild populations creates a dilemma for wildlife biologists, conservationists and public policy makers. The objective of this study was to conduct a health assessment of two previously unstudied gopher tortoise aggregations located at two sites in southeastern FL.

View Article and Find Full Text PDF

A fundamental understanding of the impact of petrochemicals and other stressors on marine biodiversity is critical for effective management, restoration, recovery, and mitigation initiatives. As species-specific information on levels of petrochemical exposure and toxicological response are lacking for the majority of marine species, a trait-based assessment to rank species vulnerabilities to petrochemical activities in the Gulf of Mexico can provide a more comprehensive and effective means to prioritize species, habitats, and ecosystems for improved management, restoration and recovery. To initiate and standardize this process, we developed a trait-based framework, applicable to a wide range of vertebrate and invertebrate species, that can be used to rank relative population vulnerabilities of species to petrochemical activities in the Gulf of Mexico.

View Article and Find Full Text PDF

Editor's Note: this Article has been retracted; the Retraction Note is available at https://doi.org/10.1038/s41598-020-75408-8 .

View Article and Find Full Text PDF

Some large-seeded plants lack effective seed dispersal agents when they are introduced as ornamental plants to new areas, but can rapidly colonize a landscape if seed dispersal functions are restored. We examined whether (Gopher Tortoise) facilitated the spread of (Cocoplum; Chrysobalanaceae) over a 14-year period in a suburban nature preserve (in Jupiter, FL, USA) by: (i) comparing germination patterns among gut-passed, hand-depulped and whole fruit treatments, and (ii) testing hypotheses about environmental predictors of the spatial distribution of , including information about movement pathways and burrow locations. While we did not find a significant difference in the total proportion of seeds that germinated in each treatment, time to event analysis revealed that seeds that were found in faeces germinated significantly earlier than seeds that were hand-depulped or that were planted as whole fruits, supporting a lone scarification effect.

View Article and Find Full Text PDF

The deep ocean is frequently assumed to be a homogeneous system lacking the same diverse life history strategies found in shallower waters. However, as our methods for exploring the deep ocean improve, common assumptions about dispersal, reproduction and behavior are constantly being challenged. Fishes exhibit the most diverse reproductive strategies among vertebrates.

View Article and Find Full Text PDF

Percomorph fishes represent over 17,100 species, including several model organisms and species of economic importance. Despite continuous advances in the resolution of the percomorph Tree of Life, resolution of the sister lineage to Percomorpha remains inconsistent but restricted to a small number of candidate lineages. Here we use an anchored hybrid enrichment (AHE) dataset of 132 loci with over 99,000 base pairs to identify the sister lineage of percomorph fishes.

View Article and Find Full Text PDF

The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features.

View Article and Find Full Text PDF

Percomorpha, comprising about 60% of modern teleost fishes, has been described as the "(unresolved) bush at the top" of the tree, with its intrarelationships still being ambiguous owing to huge diversity (>15,000 species). Recent molecular phylogenetic studies based on extensive taxon and character sampling, however, have revealed a number of unexpected clades of Percomorpha, and one of which is composed of Syngnathoidei (seahorses, pipefishes, and their relatives) plus several groups distributed across three different orders. To circumscribe the clade more definitely, we sampled several candidate taxa with reference to the previous studies and newly determined whole mitochondrial genome (mitogenome) sequences for 16 percomorph species across syngnathoids, dactylopterids, and their putatively closely-related fishes (Mullidae, Callionymoidei, Malacanthidae).

View Article and Find Full Text PDF

Spiny-rayed fishes, or acanthomorphs, comprise nearly one-third of all living vertebrates. Despite their dominant role in aquatic ecosystems, the evolutionary history and tempo of acanthomorph diversification is poorly understood. We investigate the pattern of lineage diversification in acanthomorphs by using a well-resolved time-calibrated phylogeny inferred from a nuclear gene supermatrix that includes 520 acanthomorph species and 37 fossil age constraints.

View Article and Find Full Text PDF

Squirrelfishes and soldierfishes (Holocentridae) are among the most conspicuous species in the nocturnal reef fish community. However, there is no clear consensus regarding their evolutionary relationships, which is reflected in a complicated taxonomic history. We collected DNA sequence data from multiple single copy nuclear genes and one mitochondrial gene sampled from over fifty percent of the recognized holocentrid species and infer the first species-level phylogeny of the Holocentridae.

View Article and Find Full Text PDF

Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation.

View Article and Find Full Text PDF