Buildings' occupancy is one of the important factors causing the energy performance and sustainability gap in buildings. Better occupancy prediction decreases this gap both in the design stage and in the use phase of the building. Machine learning-based models proved to be very accurate and fast for occupancy prediction when buildings are exploited under normal conditions.
View Article and Find Full Text PDFThe automated identification system of vessel movements receives a huge amount of multivariate, heterogeneous sensor data, which should be analyzed to make a proper and timely decision on vessel movements. The large number of vessels makes it difficult and time-consuming to detect abnormalities, thus rapid response algorithms should be developed for a decision support system to identify abnormal movements of vessels in areas of heavy traffic. This paper extends the previous study on a self-organizing map application for processing of sensor stream data received by the maritime automated identification system.
View Article and Find Full Text PDF