Publications by authors named "Jolie J"

Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.

View Article and Find Full Text PDF

There has been limited research devoted to secondary electron emission (SEE) from nano-materials using rapid and heavy ion bombardment. Here we report a comparison of SEE properties between novel nano-materials with a three-dimensional nano-structure composed of a mostly regular pattern of rods and gold used as a standard material for SEE under bombardment of heavy ions at energies of a few MeV/nucleon. The nano-structured materials show enhanced SEE properties when compared with gold.

View Article and Find Full Text PDF

From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the β^{+}/electron-capture decay of ^{110,112}In and the β^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested.

View Article and Find Full Text PDF

The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data.

View Article and Find Full Text PDF

A measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in 104Sn has been performed using relativistic Coulomb excitation at GSI. 104Sn is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus 100Sn.

View Article and Find Full Text PDF

The neutron-rich nuclei 94,96Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2(+) states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the E(2(1)(+)) and B(E2;2(1)(+)→0(1)(+)) systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed.

View Article and Find Full Text PDF

A β-decaying high-spin isomer in (96)Cd, with a half-life T(1/2)=0.29(-0.10)(+0.

View Article and Find Full Text PDF

The transition rates for the 2(1)+ states in (62,64,66)Fe were studied using the recoil distance Doppler-shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N = 40. The results are interpreted using the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N = 40 as governed by the number of valence protons with respect to Z ≈ 30.

View Article and Find Full Text PDF

Conversion electron spectroscopy represents an important tool for nuclear structure analysis of medium and heavy nuclei. Two iron-free magnetic electron spectrometers of the orange type have been installed at the Institute for Nuclear Physics of the University of Cologne. The very large transmission of 15% and the very good energy resolution of 1% makes the iron-free orange spectrometer a powerful instrument.

View Article and Find Full Text PDF

First comprehensive analysis with PGAA, Prompt Gamma-ray Activation Imaging (PGAI) and neutron tomography (NT) techniques at the research reactor FRM II was tested on a piece of the Allende meteorite. With the PGAA method the bulk elemental composition of the heterogeneous meteorite was determined. Due to the small dimension of the sample, only the 2D elemental distribution of the object was derived with position sensitive PGAI analysis.

View Article and Find Full Text PDF

A lifetime measurement of the excited states in the neutron-rich isotope (13)B has been performed using the (7)Li((7)Li,p)(13)B reaction. An anomalously long mean lifetime of 1.3(3) ps was found for the excited state at 3.

View Article and Find Full Text PDF

The gamma decay from Coulomb excitation of 68Ni at 600 MeV/nucleon on a Au target was measured using the RISING setup at the fragment separator of GSI. The 68Ni beam was produced by a fragmentation reaction of 86Kr at 900 MeV/nucleon on a 9Be target and selected by the fragment separator. The gamma rays produced at the Au target were measured with HPGe detectors at forward angles and with BaF2 scintillators at backward angles.

View Article and Find Full Text PDF

Collective properties of the low-lying levels in the odd-A 67-73Cu were investigated by Coulomb excitation with radioactive beams. The beams were produced at ISOLDE and postaccelerated by REX-ISOLDE up to 2.99 MeV/u.

View Article and Find Full Text PDF

Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations.

View Article and Find Full Text PDF

The gamma decay of excited states in the waiting-point nucleus (130)Cd(82) has been observed for the first time. An 8(+) two-quasiparticle isomer has been populated both in the fragmentation of a (136)Xe beam as well as in projectile fission of 238U, making (130)Cd the most neutron-rich N = 82 isotone for which information about excited states is available. The results, interpreted using state-of-the-art nuclear shell-model calculations, show no evidence of an N = 82 shell quenching at Z = 48.

View Article and Find Full Text PDF

Transition rate measurements are reported for the 2(1)+ and 2(2)+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL).

View Article and Find Full Text PDF

We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon.

View Article and Find Full Text PDF

The low-spin structure of 93Nb has been studied using the (n,n'gamma) reaction at neutron energies ranging from 1.5 to 3 MeV and the 94Zr(p,2ngamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV.

View Article and Find Full Text PDF

Lifetimes of prolate intruder states in 186Pb and oblate intruder states in 194Po have been determined by employing, for the first time, the recoil-decay tagging technique in recoil distance Doppler-shift lifetime measurements. In addition, lifetime measurements of prolate states in 188Pb up to the 8+ state were carried out using the recoil-gating method. The B(E2) values have been deduced from which deformation parameters |beta2|=0.

View Article and Find Full Text PDF

The nuclides 98Mo and 100Mo have been studied in photon-scattering experiments by using bremsstrahlung produced from electron beams with kinetic energies from 3.2 to 3.8 MeV.

View Article and Find Full Text PDF

It is shown that strong 0(+)(2)-->0(+)(1) E0 transitions provide a clear signature of phase transitional behavior in finite nuclei. Calculations using the interacting-boson approximation (IBA) show that these transition strengths exhibit a dramatic and robust increase in spherical-deformed shape transition regions, that this rise matches well the existing data, that the predictions of these E0 transitions remain large in deformed nuclei, that they arise from the specific d-boson coherence in the wave functions, and do not necessarily require the explicit mixing of normal and intruder configurations from different IBA spaces.

View Article and Find Full Text PDF

Evidence is presented to show that a group of nuclei, spanning a range of structures, corresponds to a previously proposed isolated region of regular behavior between vibrational and rotational structures that was never before observed empirically. Nuclei predicted to show such regular spectra correspond to Hamiltonian parameters that lie amidst those giving more chaotic spectra. We identify a key observable that has a one-to-one correspondence to this arc of regularity and which therefore provides both an empirical signature for it and a clue to its underlying nature.

View Article and Find Full Text PDF

We show that the second-order phase transition between spherical and deformed shapes of atomic nuclei is an isolated point following from the Landau theory of phase transitions. This point can occur only at the junction of two or more first-order phase transitions which explains why it is associated with one special type of structure and requires the recently proposed first-order phase transition between prolate and oblate nuclear shapes. Finally, we suggest the first empirical example of a nucleus located at the isolated triple-point.

View Article and Find Full Text PDF

We examine a quantum phase transition in gamma-soft nuclei, where the O(6) limit is simultaneously a dynamical symmetry of the U(6) group of the interacting boson model and a critical point of a prolate-oblate phase transition. This is the only example of phase transitional behavior that can be described analytically for a finite s,d boson system.

View Article and Find Full Text PDF