Publications by authors named "Jolene E Valentin"

Biodegradable silk catheters for the delivery of therapeutics are designed with a focus on creating porous gradients that can direct the release of molecules away from the implantation site. Though suitable for a range of applications, these catheters are designed for drug delivery to transplanted adipose tissue in patients having undergone a fat grafting procedure. A common complication for fat grafts is the rapid reabsorption of large volume adipose transplants.

View Article and Find Full Text PDF

Autologous fat grafting after breast cancer surgery is commonly performed, but concerns about oncologic risk remain. To model the interaction between fat grafting and breast cancer cells, two approaches were employed. In the first approach, graded numbers of viable MDA-MB-231 or BT-474 cells were admixed directly into human fat grafts and injected subcutaneously into immune-deficient mice to determine if the healing graft is a supportive environment for the tumor.

View Article and Find Full Text PDF

Background: Fat grafting is a promising technique for soft-tissue augmentation, although graft retention is highly unpredictable and factors that affect graft survival have not been well defined. Because of their capacity for differentiation and growth factor release, adipose-derived stem cells may have a key role in graft healing. The authors' objective was to determine whether biological properties of adipose-derived stem cells present within human fat would correlate with in vivo outcomes of graft volume retention.

View Article and Find Full Text PDF

Biologic scaffolds composed of extracellular matrix (ECM) have been used to reinforce or replace damaged or missing musculotendinous tissues in both preclinical studies and in human clinical applications. However, most studies have focused upon morphologic endpoints and few studies have assessed the in-situ functionality of newly formed tissue; especially new skeletal muscle tissue. The objective of the present study was to determine both the in-situ tetanic contractile response and histomorphologic characteristics of skeletal muscle tissue reconstructed using one of four test articles in a rodent abdominal wall model: 1) porcine small intestinal submucosa (SIS)-ECM; 2) carbodiimide-crosslinked porcine SIS-ECM; 3) autologous tissue; or 4) polypropylene mesh.

View Article and Find Full Text PDF

Biologic scaffolds composed of extracellular matrix (ECM) are widely used to facilitate remodeling and reconstruction of a variety of tissues in both preclinical animal studies and human clinical applications. The mechanisms by which such scaffolds influence the host tissue response are only partially understood, but it is logical that the mononuclear macrophage cell population plays a central role. The present study evaluated the role of macrophages that derive from peripheral blood in the degradation of ECM scaffolds.

View Article and Find Full Text PDF

Recently, macrophages have been characterized as having an M1 or M2 phenotype based on receptor expression, cytokine and effector molecule production, and function. The effects of macrophage phenotype upon tissue remodeling following the implantation of a biomaterial are largely unknown. The objectives of this study were to determine the effects of a cellular component within an implanted extracellular matrix (ECM) scaffold upon macrophage phenotype, and to determine the relationship between macrophage phenotype and tissue remodeling.

View Article and Find Full Text PDF

Scaffolds for tissue engineering and regenerative medicine applications are commonly manufactured from synthetic materials, intact or isolated components of extracellular matrix (ECM), or a combination of such materials. After surgical implantation, the metabolic requirements of cells that populate the scaffold depend upon adequate gas and nutrient exchange with the surrounding microenvironment. The present study measured the oxygen transfer through three biologic scaffold materials composed of ECM including small intestinal submucosa (SIS), urinary bladder submucosa (UBS), and urinary bladder matrix (UBM), and one synthetic biomaterial, Dacron.

View Article and Find Full Text PDF

Macrophage phenotype can be characterized as proinflammatory (M1) or immunomodulatory and tissue remodeling (M2). The present study used a rat model to determine the macrophage phenotype at the site of implantation of two biologic scaffolds that were derived from porcine small intestinal submucosa (SIS) and that differed mainly according to their method of processing: the Restore device (SIS) and the CuffPatch device (carbodiimide crosslinked form of porcine-derived SIS (CDI-SIS)). An autologous tissue graft was used as a control implant.

View Article and Find Full Text PDF

Biologic scaffolds composed of naturally occurring extracellular matrix (ECM) are currently in clinical use for the repair and reconstruction of damaged or missing tissues. The material and structural properties of the ECM scaffold are important determinants of the potential clinical applications and these properties may be affected by manufacturing steps, processing steps, and storage conditions. The present study compared the structural properties of hydrated and lyophilized forms of a biologic scaffold derived from the porcine urinary bladder (urinary bladder matrix or UBM).

View Article and Find Full Text PDF

Background: Biologic scaffold materials prepared from extracellular matrix are currently available for the surgical repair of damaged or missing musculotendinous tissue. These scaffolds differ in their species and tissue of origin, methods of processing, and methods of terminal sterilization. The purpose of the present study was to evaluate the host-tissue morphologic response to five commercially available extracellular matrix-derived biologic scaffolds used for orthopaedic soft-tissue repair in a rodent model.

View Article and Find Full Text PDF