Multidrug resistance (MDR), having a multifactorial nature, is one of the major clinical problems causing the failure of anticancer therapy. The aim of this study was to examine the antitumour effects of selected pyridinium salts, 1-methyl-3-nitropyridine chloride (MNP) and 3,3,6,6,10-pentamethyl-3,4,6,7-tetrahydro-[1,8(2H,5H)-dion]acridine chloride (MDION), on sensitive leukaemia HL60 cells and resistant topoisomerase II-defective HL60/MX2 cells. Cell growth was determined by the MTT test.
View Article and Find Full Text PDFBackground/aim: Clinical significance of antitumour drugs is limited by multidrug resistance (MDR). We examined the effect of bioreductive activation of the anthracyclines, doxorubicin (DOX) and pirarubicin (PIRA), by cytochrome P450 reductase (CPR) on triggering apoptosis of leukaemia HL60 cells and their MDR counterparts.
Materials And Methods: Cell cycle and FAS expression were investigated by flow cytometry.
Multidrug resistance (MDR) constitutes the major cause of the failure in anticancer therapy. One of the most important mechanisms leading to the occurrence of MDR is related to the modulation of cellular death pathways. The aim of this study was to determine the effect of quercetin (Q) on triggering the programed death of human promyelocytic leukemia sensitive cells HL60 as well as multidrug resistant HL60/VINC cells overexpressing P-glycoprotein and HL60/MX2 cells characterized by the presence of mutated α isoform of topoisomerase II and the absence of β isoform of this enzyme.
View Article and Find Full Text PDFThe aim of this study was to examine the antitumour effects of plant phenolic acids, gallic acid (GA) and ellagic acid (EA), on human promyelocytic leukaemia sensitive HL60 cell line and its resistant sublines exhibiting two MDR phenotypes: HL60/VINC (overexpressing P-glycoprotein) and HL60/MX2 (characterized by the presence of mutated α isoform of topoisomerase II). Both studied compounds exerted comparable cytotoxic activities towards sensitive HL60 cells and their MDR counterparts. It was also found that GA and EA modulated the cellular level of reactive oxygen species in a dose-dependent and time-dependent manner.
View Article and Find Full Text PDFPostepy Hig Med Dosw (Online)
May 2017
Metastatic tumours resistant to chemotherapy are the major cause of the clinical failure in the treatment of malignant diseases. It is observed often that drugs active against primary tumours do not exhibit the same efficacy towards metastatic tumour cells having modified signaling pathways. Among cellular factors involved in the development of the metastatic potential of multidrug resistant tumour cells are some oncoproteins, antiapoptotic proteins, mutated suppressor proteins, integrins and CD44 receptor.
View Article and Find Full Text PDFBackground: Idarubicin (IDA) is one of clinically important anticancer drugs belonging to the anthracycline antibiotic family. The aim of this study was to examine DNA damage induced by NADPH cytochrome P450 reductase (CPR)-activated IDA in human sensitive MCF7 and multidrug resistant MCF7/DOX (overexpressing P-gp) breast adenocarcinoma cells.
Methods: The evaluation of DNA fragmentation caused by single strand breaks (SSB) and double strand breaks (DSB) was performed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) test.
The aim of the study was to investigate the effect of selected polyphenols: gallic acid (GA) and epigallocatechin gallate (EGCG) on matrix metalloproteinase (MMP-2 and MMP-9) activity in multidrug resistant (MDR) human breast adenocarcinoma cells: MCF7/DOX cells and obtained recently in our laboratory MCF7/DOX500 cells by the permanent selection of MCF7/DOX cells with 500 nM doxorubicin (DOX). The activity of MMP-2 and MMP-9 and the effect of studied polyphenols on these matrix proteases were examined by gelatin zymography assays. We have found that the activity of MMP-2 and MMP-9 significantly increased in resistant MCF7/DOX and MCF7/DOX500 cells whereas they were not detected in sensitive MCF7 cells.
View Article and Find Full Text PDFThe objective of this study was to examine the effect of bioreductive activation of antitumour drug, mitoxantrone (MX), by liver NADPH cytochrome P450 reductase (CPR) on inducing apoptosis of human promyelocytic sensitive leukaemia HL60 cell line and its multidrug resistance (MDR) sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX). It was found that non-activated as well as CPR-activated form of MX used at IC90 were able to influence cell cycle of sensitive HL60 as well as resistant cells and induce apoptosis. Interestingly, it was evidenced that HL60/VINC cells were more susceptible to undergo caspase-3/caspase-8-dependent apoptosis induced by both studied forms of MX compared to HL60 and HL60/DOX cells.
View Article and Find Full Text PDFObjectives: The effect of anthrapyridone compound CO1 retaining cytotoxic activity against multidrug resistant (MDR) tumour cells on inducing cell death of the sensitive leukaemia HL60 cell line and its MDR sublines (HL60/VINC and HL60/DOX) was examined.
Methods: The effects of CO1 and the reference compound doxorubicin (DOX) on examined cells were analysed by studying their cytotoxicity, drug intracellular accumulation, cell cycle distribution, caspase-3 and caspase-8 activity, Fas expression and lysosomal integrity.
Key Findings: CO1 was much less effective at influencing the cell cycle of examined cells than DOX a well-known antitumour drug targeting cellular DNA and causing G2/M checkpoint arrest.
The aim of this study was to examine the role of structural factors of antitumour anthraquinone derivatives and analogues in the ability to undergo bioreductive activation by NADPH cytochrome P450 reductase (CPR) and determine the impact of this activation on increasing the activity especially with regard to multidrug resistant (MDR) tumour cells. It was found that at a high NADPH concentration (500 μmol/l), the anthracenedione agent ametantrone, with an unmodified quinone structure, was susceptible to CPR-dependent reductive activation. In contrast, it was shown that compounds with modified quinone grouping (benzoperimidine BP1, anthrapyridone CO1 and pyrazolopyrimidoacridine PPAC2) did not undergo reductive activation by CPR.
View Article and Find Full Text PDFWe examined the effect of selected anthraquinone antitumour agents - doxorubicin (DOX), pirarubicin (PIRA) and benzoperimidine BP1 - on inducing apoptosis of the sensitive leukaemia HL60 cell line and its multidrug resistance sublines overexpressing P-glycoprotein (HL60/VINC) and multidrug resistance-associated protein 1 (HL60/DOX). All agents used at IC50 and IC90 were able to influence the cell cycle of sensitive HL60 and resistant cells and induce apoptosis. Interestingly, it was seen that HL60/VINC cells were more susceptible to undergo caspase-3/caspase-8-dependent apoptosis induced by the studied anthraquinone compounds compared with HL60 and HL60/DOX cells.
View Article and Find Full Text PDFClinical usefulness of anthracyclines belonging to bioreductive antitumour drugs is limited by the occurrence of multidrug resistance (MDR). The aim of this study was to examine the role of structural factors of antitumour anthracycline drugs in the ability to undergo bioreductive activation by NADPH cytochrome P450 reductase (CPR) and determine the impact of this activation on increasing the activity especially in regard to MDR tumour cells. It was evidenced that at high NADPH concentration (500 μM) anthracyclines having non-modified quinone structure: doxorubicin (DOX), daunorubicin (DR) and idarubicin (IDA) were susceptible upon CPR catalysis to undergo a multi-stage chemical transformation concerning their chromophore part.
View Article and Find Full Text PDFThe aim of the study was to examine the effect of 1-methylnicotinamide (MNA) and 1-methyl-3-nitropyridine (MNP) on mitochondria activity and proliferation of endothelial EA.hy926 cells. The activity of MNA was also referred to nicotinamide (NAM) being MNA metabolic precursor.
View Article and Find Full Text PDFJ Pharm Pharmacol
May 2008
The aim of this study was to examine the effect of selected pyridinium salts, 1-methyl-3-nitropyridine chloride (MNP(+)Cl(-)) and 3,3,6,6,10-pentamethyl-3,4,6,7-tetrahydro-[1,8(2H,5H)-dion]acridine chloride (MDION(+)Cl(-)), on the activity of doxorubicin (DOX) and vincristine (VINC) towards human promyelocytic leukaemia HL60 cells as well as its multidrug resistant (MDR) sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX). MNP and MDION salts were much less cytotoxic themselves (about 100-fold and 2000-fold compared with DOX and VINC, respectively) against HL60 cells but, in contrast to DOX and VINC, they conserved an important cytotoxic activity towards resistant HL60/VINC and HL60/DOX cells (resistance factor, RF = 2-4.5).
View Article and Find Full Text PDFThe aim of the present study was to determine in vitro antileukaemic activities of extracts obtained from chokeberry (Aronia melanocarpa [Michx] Elliot) and mulberry (Morus alba L.) leaves against promyelocytic HL60 cell line and its multidrug resistant sublines exhibiting two different MDR phenotypes: HL60/VINC (overexpressing P-glycoprotein) and HL60/DOX (overexpressing MRP1 protein). It was found that the extracts from chokeberry and mulberry leaves were active against the sensitive leukaemic cell line HL60 and retained the in vitro activity against multidrug resistant sublines (HL60/VINC and HL60/DOX).
View Article and Find Full Text PDFCancer Lett
January 2007
The aim of this study was to examine the role of reductive activation of mitoxantrone (MX) by human liver NADPH cytochrome P450 reductase (CPR) in increasing its ability to inhibit the growth of human promyelocytic sensitive leukaemia HL60 cell line as well as its MDR sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX). Our assays showed that the reduction of MX by exogenously added CPR in the presence of low NADPH concentration had no effect in increasing its ability to inhibit the growth of sensitive and MDR tumour cells. In contrast, an important increase in antiproliferative activity of MX after its reductive activation by CPR at high NADPH concentration was observed against HL60/VINC as well as HL60/DOX cells.
View Article and Find Full Text PDFMultidrug resistance (MDR) of tumour cells is related to the overexpression of ATP-dependent pumps responsible for the active efflux of antitumour agents out of resistant cells. Benzoperimidine and anthrapyridone compounds exhibit comparable cytotoxic activity against sensitive and MDR tumour cells. They diffuse extremely rapidly across the plasma membrane and render the ATP-dependent efflux inefficient.
View Article and Find Full Text PDFThe aim of the present study was to determine in vitro antileukaemic activity of extracts obtained from selected berry plant leaves (Fragaria x ananassa Duch. cv Elsanta, raspberry Rubus ideus L. cv Polana and blueberry Vaccinium corymbosum L.
View Article and Find Full Text PDFThe HPLC method was used to determine the purine nucleotide (ATP, ADP, AMP, GTP, GDP, GMP, NAD(+)) contents and the values of the adenylate energy charge (AEC) and guanylate energy charge (GEC) for three human acute myelogenous leukemia (AML) cell lines: HL60 (M3 subtype of AML), THP1 (M5 subtype of AML), and HEL (M6 subtype of AML) in French-American-British classification (FAB) and for one chronic myelogenous leukemia (CML) cell line: K562. The results showed that the examined leukemic cells had some significant changes in their purine nucleotide concentrations relative to healthy cells. On the basis of the obtained results, it seems that two of the tested acute myelogenous leukemia cell lines, HL60 and HEL, have similar purine nucleotide metabolisms, while the third AML cell line, THP1, has a purine nucleotide metabolism like that of the chronic myelogenous leukemia cell line, K562.
View Article and Find Full Text PDFSynthetic antitumor anthracenedione drugs, in contrast to anthracycline antibiotics, are ineffective in free radical formation in NADH dehydrogenase system. Our results have indicated that neither the reduction potential nor the side chain conformation and the energies of border orbitals (HOMO and LUMO) determine the ability of anthracenediones to stimulate reactive oxygen species formation in NADH dehydrogenase system. It was shown that the distribution of the molecular electrostatic potential (MEP), around the quinone system was crucial for this ability.
View Article and Find Full Text PDFNumerous data indicate that cellular oxidoreductases may be responsible for the cardiotoxic effects of antitumor anthracycline drugs as a consequence of the mediation by these agents of one-electron transfer from reduced nucleotides to atmospheric oxygen. This process is catalyzed primarily by NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase and leads to the formation of reactive oxygen species (ROS). In this work the data on the ability of new amino sugar derivatives of daunorubicin to stimulate NAD(P)H oxidation in the above oxidoreductase systems are presented.
View Article and Find Full Text PDFThe appearance of multidrug resistance (MDR) of tumour cells to a wide array of antitumour drugs, structurally diverse and having different mechanisms of action, constitutes the major obstacle to the successful treatment of cancer. Our approach to search for non-cross resistant antitumour agents is based on the rational design of derivatives, which have a high kinetics of passive cellular uptake rendering their active efflux by MDR exporting pumps inefficient. Recently, two families of acridine cytotoxic agents were obtained, pyrazoloacridines (PACs) and pyrazolopyrimidoacridines (PPACs).
View Article and Find Full Text PDFCancer Detect Prev
January 2005
Multidrug resistance of tumor cells is associated with the presence of membrane proteins responsible for the cytostatics export. Recently, we have synthesized a new family of benzoperimidines causing the futile cycle of MDR pumps. In this study, biological data for benzoperimidine esters are presented for selected cell lines: sensitive (HL-60, GLC4, K562), P-gp resistant (HL-60/VINC, K562/DX), MRP1 resistant (HL-60/DX) and MRP1/LRP resistant (GLC4/DX).
View Article and Find Full Text PDFThe antitumor drugs of the anthraquinone group are widely used agents in the treatment of a variety of human neoplasms. However, their clinical effectiveness is limited by several factors, among which dose-dependent cardiotoxicity is of great importance. Numerous data indicate that the cardiac effects of these drugs are the consequence of one-electron transfer from reduced nucleotides to atmospheric oxygen.
View Article and Find Full Text PDF