With the US Food and Drug Administration (FDA) approval of four CD19- and one BCMA-targeted chimeric antigen receptor (CAR) therapy for B cell malignancies, CAR T cell therapy has finally reached the status of a medicinal product. The successful manufacturing of autologous CAR T cell products is a key requirement for this promising treatment modality. By analyzing the composition of 214 apheresis products from 210 subjects across eight disease indications, we found that high CD14 cell content poses a challenge for manufacturing CAR T cells, especially in patients with non-Hodgkin's lymphoma and multiple myeloma caused by the non-specific phagocytosis of the magnetic beads used to activate CD3 T cells.
View Article and Find Full Text PDFWe report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome-positive (Ph(+)) disease as in those with relapsed disease after previous allo-SCT.
View Article and Find Full Text PDFAdults with relapsed B cell acute lymphoblastic leukemia (B-ALL) have a dismal prognosis. Only those patients able to achieve a second remission with no minimal residual disease (MRD) have a hope for long-term survival in the context of a subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have treated five relapsed B-ALL subjects with autologous T cells expressing a CD19-specific CD28/CD3ζ second-generation dual-signaling chimeric antigen receptor (CAR) termed 19-28z.
View Article and Find Full Text PDFWe report the findings from the first 10 patients with chemotherapy-refractory chronic lymphocytic leukemia (CLL) or relapsed B-cell acute lymphoblastic leukemia (ALL) we have enrolled for treatment with autologous T cells modified to express 19-28z, a second-generation chimeric antigen (Ag) receptor specific to the B-cell lineage Ag CD19. Eight of the 9 treated patients tolerated 19-28z(+) T-cell infusions well. Three of 4 evaluable patients with bulky CLL who received prior conditioning with cyclophosphamide exhibited either a significant reduction or a mixed response in lymphadenopathy without concomitant development of B-cell aplasia.
View Article and Find Full Text PDFOn the basis of promising preclinical data demonstrating the eradication of systemic B-cell malignancies by CD19-targeted T lymphocytes in vivo in severe combined immunodeficient-beige mouse models, we are launching phase I clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia. We present here the validation of the bioprocess which we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads CD3/CD28.
View Article and Find Full Text PDFThe ability to genetically modify human T cells to target tumor antigens through retroviral gene transfer constitutes a potentially powerful approach to cancer immunotherapy. However, low transduction efficiencies may hamper the efficacy of such therapeutic strategies in the clinical setting. Most commonly, gammaretroviral gene transfer into T cells is conducted through spinoculation, that is, centrifugation of retroviral particles and T cells on RetroNectin-coated non-tissue culture vessels.
View Article and Find Full Text PDFThe genetic transfer of antigen receptors is a powerful approach to rapidly generate tumor-specific T lymphocytes. Unlike the physiologic T-cell receptor, chimeric antigen receptors (CARs) encompass immunoglobulin variable regions or receptor ligands as their antigen recognition moiety, thus permitting T cells to recognize tumor antigens in the absence of human leukocyte antigen expression. CARs encompassing the CD3zeta chain as their activating domain induce T-cell proliferation in vitro, but limited survival.
View Article and Find Full Text PDF