Publications by authors named "Jolanta Kordowska"

Promising treatments for spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, prompted calls for inclusion in newborn screening (NBS). In January 2018, the New England Newborn Screening Program (NENSP) began statewide screening for SMA using a tiered algorithm looking for the absence of Exon 7. When results from the first and second tier needed reconciliation, we developed and validated a third tier DNA sequencing assay to ensure the presence or absence of Exon 7.

View Article and Find Full Text PDF

Smooth muscle caldesmon (h-CaD) is an actin- and myosin-binding protein that reversibly inhibits the actomyosin ATPase activity in vitro. To test the function of h-CaD in vivo, we eliminated its expression in mice. The h-CaD-null animals appeared normal and fertile, although the litter size was smaller.

View Article and Find Full Text PDF

We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation.

View Article and Find Full Text PDF

Actin polymerization and depolymerization plays a central role in controlling a wide spectrum of cellular processes. There are many actin-binding proteins in eukaryotic cells. Their roles in the remodeling of the actin architecture and whether they work cooperatively await further study.

View Article and Find Full Text PDF

The actin-binding protein caldesmon (CaD) exists both in smooth muscle (the heavy isoform, h-CaD) and non-muscle cells (the light isoform, l-CaD). In smooth muscles h-CaD binds to myosin and actin simultaneously and modulates the actomyosin interaction. In non-muscle cells l-CaD binds to actin and stabilizes the actin stress fibers; it may also mediate the interaction between actin and non-muscle myosins.

View Article and Find Full Text PDF

The function of the ubiquitous actin-binding protein, caldesmon (l-CaD) in mammalian non-muscle cells remains elusive. During mitosis, l-CaD becomes markedly phosphorylated at Ser497 and Ser527 (in the rat sequence), therefore, it has been suggested that l-CaD is involved in cytokinesis by inhibiting the actomyosin interaction until it is phosphorylated, although direct in vivo evidence is still missing. In the present study, we used F-actin staining and specific antibodies against these two phosphorylation sites of l-CaD to simultaneously monitor actin assembly and l-CaD phosphorylation.

View Article and Find Full Text PDF

S100A6 is a member of the S100 family of Ca(2+) binding proteins, which have come to play an important role in the diagnosis of cancer due to their overexpression in various tumor cells. We have determined the crystal structures of human S100A6 in the Ca(2+)-free and Ca(2+)-bound states to resolutions of 1.15 A and 1.

View Article and Find Full Text PDF