Recently, the development of tandem devices has become one of the main strategies for further improving the efficiency of photovoltaic modules. In this regard, combining well-established Si technology with thin film technology is one of the most promising approaches. However, this imposes several limitations on such thin film technology, such as low prices, the absence of scarce or toxic elements, the possibility to tune optical properties and long lifetime stability.
View Article and Find Full Text PDFA cost-effective solution for the synthesis of high-porosity TiO aerogels, which can be used as a mesoporous perovskite network charge-carrier material during the manufacture of solar cells, is described. The effects of the synthesis parameters (precursor (titanium (IV) isopropoxide (TIP) and tetrabutyl orthotitanate (TBOT)), additional solvent exchange (n-hexane (nH), cyclohexane (CH), and diethyl ether (DE)), subcritical drying (800 mbar vacuum, 70 °C, 8 h), aging, and calcination on the aerogel's structure have been investigated. Methods of XRD, FT-IR, BET, Raman, STA, SEM, UV-vis, and thermal conductivity measurements were applied to find out the relation between the synthesis conditions and the properties of the synthesized aerogels.
View Article and Find Full Text PDFThe aim of this investigation was to synthesize high porosity TiO aerogel by applying sol-gel and subcritical drying methods and to identify the influence of reagent's nature and synthesis conditions on their structural and optical properties. Methods of XRD, FT-IR, BET, STA, SEM, and UV-vis were applied to investigate and compare the properties of synthesized TiO aerogels and to determine the most effective synthesis route. The structural parameters of the synthesized materials can be varied by changing the precursor type (titanium (IV), isopropoxide (TIP), or tetrabutylorthotitanate (TBOT)) and the nature of the solvent used for additional exchange (-hexane (nH), cyclohexane (CH), or diethyl ether (DE)).
View Article and Find Full Text PDF