Publications by authors named "Jolanda Piepers"

Purpose: Tumor hypoxia imposes a main obstacle to the efficacy of anti-cancer therapy. Understanding the cellular dynamics of individual hypoxic cells before, during and post-treatment has been hampered by the technical inability to identify and trace these cells over time.

Methods And Materials: Here, we present a novel lineage-tracing reporter for hypoxic cells based on the conditional expression of a HIF1a-CreER-UnaG biosensor that can visualize hypoxic cells in a time-dependent manner and trace the fate of hypoxic cells over time.

View Article and Find Full Text PDF

Radiation therapy (RT) is a common treatment for lung cancer. Still, it can lead to irreversible loss of pulmonary function and a significant reduction in quality of life for one-third of patients. Preexisting comorbidities, such as chronic obstructive pulmonary disease (COPD), are frequent in patients with lung cancer and further increase the risk of complications.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on glioblastoma (GBM), a dangerous brain cancer, and how patient-derived cancer organoids (PGOs) can help understand how tumors respond to treatments and why they sometimes don't work.
  • - Researchers created PGOs from GBM samples and tested how they respond to a cancer drug called temozolomide (TMZ), finding that different organoids had different reactions based on their unique genetic traits.
  • - The results show that PGOs can keep the important genetic differences of the tumors and could be used in the future to tailor treatments to individual patients and discover new drug targets.
View Article and Find Full Text PDF

Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling.

View Article and Find Full Text PDF

Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson's disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model () to two Mn chemical species, MnCl and Citrate of Mn(II) (0-2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences.

View Article and Find Full Text PDF

An increasing number of findings from epidemiological studies support associations between exposure to air pollution and the onset of several diseases, including pulmonary, cardiovascular and neurodegenerative diseases, and malignancies. However, intermediate, and potentially mediating, biological mechanisms associated with exposure to air pollutants are largely unknown. Previous studies on the human exposome have shown that the expression of certain circulating microRNAs (miRNAs), regulators of gene expression, are altered upon exposure to traffic-related air pollutants.

View Article and Find Full Text PDF

Diesel vehicle emissions are the major source of genotoxic compounds in ambient air from urban areas. These pollutants are linked to risks of cardiovascular diseases, lung cancer, respiratory infections and adverse neurological effects. Biological events associated with exposure to some air pollutants are widely unknown but applying omics techniques may help to identify the molecular processes that link exposure to disease risk.

View Article and Find Full Text PDF

Reprogramming of mRNA translation has a key role in cancer development and drug resistance . However, the molecular mechanisms that are involved in this process remain poorly understood. Wobble tRNA modifications are required for specific codon decoding during translation.

View Article and Find Full Text PDF

Translational control is a cellular response mechanism which initiates adaptation during various stress situations. Here, we investigated the role of translational control after benzo[a]pyrene (BaP) exposure in primary mouse hepatocytes. Translated mRNAs were separated and captured based on the number of associated ribosomes using sucrose gradients and subjected to RNA sequencing (RNAseq) to investigate translational changes.

View Article and Find Full Text PDF

The infiltrative behavior of diffuse gliomas severely reduces therapeutic potential of surgical resection and radiotherapy, and urges for the identification of new drug-targets affecting glioma growth and migration. To address the potential role of protein tyrosine phosphatases (PTPs), we performed mRNA expression profiling for 91 of the 109 known human PTP genes on a series of clinical diffuse glioma samples of different grades and compared our findings with in silico knowledge from REMBRANDT and TCGA databases. Overall PTP family expression levels appeared independent of characteristic genetic aberrations associated with lower grade or high grade gliomas.

View Article and Find Full Text PDF