Although phenotypic plasticity is a widespread phenomenon, its implications for species responses to climate change are not well understood. For example, toxic cyanobacteria can form dense surface blooms threatening water quality in many eutrophic lakes, yet a theoretical framework to predict how phenotypic plasticity affects bloom development at elevated CO is still lacking. We measured phenotypic plasticity of the carbon fixation rates of the common bloom-forming cyanobacterium .
View Article and Find Full Text PDFThe color of many lakes and seas is changing, which is likely to affect the species composition of freshwater and marine phytoplankton communities. For example, cyanobacteria with phycobilisomes as light-harvesting antennae can effectively utilize green or orange-red light. However, recent studies show that they use blue light much less efficiently than phytoplankton species with chlorophyll-based light-harvesting complexes, even though both phytoplankton groups may absorb blue light to a similar extent.
View Article and Find Full Text PDFCyanobacteria can form dense and sometimes toxic blooms in freshwater and marine environments, which threaten ecosystem functioning and degrade water quality for recreation, drinking water, fisheries and human health. Here, we review evidence indicating that cyanobacterial blooms are increasing in frequency, magnitude and duration globally. We highlight species traits and environmental conditions that enable cyanobacteria to thrive and explain why eutrophication and climate change catalyse the global expansion of cyanobacterial blooms.
View Article and Find Full Text PDFInsight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.
View Article and Find Full Text PDFTraditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations.
View Article and Find Full Text PDFClimate change is likely to stimulate the development of harmful cyanobacterial blooms in eutrophic waters, with negative consequences for water quality of many lakes, reservoirs and brackish ecosystems across the globe. In addition to effects of temperature and eutrophication, recent research has shed new light on the possible implications of rising atmospheric CO concentrations. Depletion of dissolved CO by dense cyanobacterial blooms creates a concentration gradient across the air-water interface.
View Article and Find Full Text PDFRising atmospheric CO2 concentrations are likely to affect many ecosystems worldwide. However, to what extent elevated CO2 will induce evolutionary changes in photosynthetic organisms is still a major open question. Here, we show rapid microevolutionary adaptation of a harmful cyanobacterium to changes in inorganic carbon (Ci) availability.
View Article and Find Full Text PDFIntraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte Ochromonas as intraguild predator and the harmful cyanobacterium Microcystis aeruginosa as its prey.
View Article and Find Full Text PDFHarmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention.
View Article and Find Full Text PDFAlthough rising CO2 concentrations are thought to promote the growth and alter the carbon : nutrient stoichiometry of primary producers, several studies have reported conflicting results. To reconcile these contrasting results, we tested the following hypotheses: rising CO2 levels (1) will increase phytoplankton biomass more at high nutrient loads than at low nutrient loads, but (2) will increase their carbon : nutrient stoichiometry more at low than at high nutrient loads. We formulated a mathematical model to predict dynamic changes in phytoplankton population density, elemental stoichiometry and inorganic carbon chemistry in response to rising CO2 .
View Article and Find Full Text PDFRising CO2 levels may act as an important selective factor on the CO2-concentrating mechanism (CCM) of cyanobacteria. We investigated genetic diversity in the CCM of Microcystis aeruginosa, a species producing harmful cyanobacterial blooms in many lakes worldwide. All 20 investigated Microcystis strains contained complete genes for two CO2 uptake systems, the ATP-dependent bicarbonate uptake system BCT1 and several carbonic anhydrases (CAs).
View Article and Find Full Text PDFClimate change scenarios predict a doubling of the atmospheric CO(2) concentration by the end of this century. Yet, how rising CO(2) will affect the species composition of aquatic microbial communities is still largely an open question. In this study, we develop a resource competition model to investigate competition for dissolved inorganic carbon in dense algal blooms.
View Article and Find Full Text PDFThe elemental composition of primary producers reflects the availability of light, carbon and nutrients in their environment. According to the carbon-nutrient balance hypothesis, this has implications for the production of secondary metabolites. To test this hypothesis, we investigated a family of toxins, known as microcystins, produced by harmful cyanobacteria.
View Article and Find Full Text PDFTo prevent flooding of the Dutch delta, former estuaries have been impounded by the building of dams and sluices. Some of these water bodies, however, experience major ecological problems. One of the problem areas is the former Volkerak estuary that was turned into a freshwater lake in 1987.
View Article and Find Full Text PDF