Publications by authors named "Jolana Tureckova"

Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization.

View Article and Find Full Text PDF

In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients.

View Article and Find Full Text PDF

Background: Ubiquitin ligases (Ub-ligases) are essential intracellular enzymes responsible for the regulation of proteome homeostasis, signaling pathway crosstalk, cell differentiation and stress responses. Individual Ub-ligases exhibit their unique functions based on the nature of their substrates. They create a complex regulatory network with alternative and feedback pathways to maintain cell homeostasis, being thus important players in many physiological and pathological conditions.

View Article and Find Full Text PDF

LST1 is a small adaptor protein expressed in leukocytes of myeloid lineage. Due to the binding to protein tyrosine phosphatases SHP1 and SHP2 it was thought to have negative regulatory function in leukocyte signaling. It was also shown to be involved in cytoskeleton regulation and generation of tunneling nanotubes.

View Article and Find Full Text PDF

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-19. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-19. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2).

View Article and Find Full Text PDF

Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) . We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor.

View Article and Find Full Text PDF

Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two strains.

View Article and Find Full Text PDF

The proper positioning of organs during development is essential, yet little is known about the regulation of this process in mammals. Using murine tooth development as a model, we have found that cell migration plays a central role in positioning of the organ primordium. By combining lineage tracing, genetic cell ablation, and confocal live imaging, we identified a migratory population of Fgf8-expressing epithelial cells in the embryonic mandible.

View Article and Find Full Text PDF

Unlabelled: Hypermethylated in cancer 1 (HIC1) represents a prototypic tumor suppressor gene frequently inactivated by DNA methylation in many types of solid tumors. The gene encodes a sequence-specific transcriptional repressor controlling expression of several genes involved in cell cycle or stress control. In this study, a Hic1 allele was conditionally deleted, using a Cre/loxP system, to identify genes influenced by the loss of Hic1.

View Article and Find Full Text PDF

HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene located on chromosome 17p13.3, a region frequently hypermethylated or deleted in human neoplasias. In mouse, Hic1 is essential for embryonic development and exerts an antitumor role in adult animals.

View Article and Find Full Text PDF

Migration is a complex process that, besides its various physiological functions in embryogenesis and adult tissues, plays a crucial role in cancer cell invasion and metastasis. The focus of this study is the involvement and collaboration of Akt, focal adhesion kinase (FAK), and Src kinases in migration and invasiveness of colorectal cancer cells. We show that all three kinases can be found in one protein complex; nevertheless, the interaction between Akt and Src is indirect and mediated by FAK.

View Article and Find Full Text PDF

Increased activity of the Src tyrosine protein kinase that has been observed in a large number of human malignancies appears to be a promising target for drug therapy. In the present study, a critical role of the Src activity in the deregulation of mTOR signaling pathway in Rous sarcoma virus (RSV)-transformed hamster fibroblasts, H19 cells, was shown using these cells treated with the Src-specific inhibitor, SU6656, and clones of fibroblasts expressing either the active Src or the dominant-negative Src kinase-dead mutant. Disruption of the Src kinase activity results in substantial reduction of the phosphorylation and activity of the Akt/protein kinase B (PKB), phosphorylation of tuberin (TSC2), mammalian target of rapamycin (mTOR), S6K1, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 4E-BP1.

View Article and Find Full Text PDF
Article Synopsis
  • * Clones H8 and G10 showed significant intercellular structures and higher levels of differentiation markers like CEACAM 1 and alkaline phosphatase, while G9 and A3 displayed a weaker response in these aspects.
  • * Although all clones experienced apoptosis when treated with butyrate, G9 and A3 were more sensitive to it, suggesting that variations in differentiation and response may indicate stem cell-like properties among HT29 cells.
View Article and Find Full Text PDF

beta-catenin has a dual function; it is implicated in intercellular junctions and transcriptional co-activation. Here we examined the regulation of the expression and localization of beta-catenin in HT29 colorectal adenocarcinoma cells. Our results showed that inhibition of PI-3 kinase with wortmannin was accompanied by a considerably reduced expression of beta-catenin.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how phosphatidylinositol-3 kinase (PI 3-kinase) regulates PKCbetaII in colorectal cancer cells, focusing on two adenocarcinoma lines: HT29 and Caco-2.
  • In HT29 cells, which require sodium butyrate for differentiation, both PI 3-kinase and PKCbetaII activities decreased, suggesting a regulatory relationship.
  • In contrast, Caco-2 cells, which differentiate spontaneously, showed no change in PI 3-kinase activity with butyrate, indicating that the differentiation mechanisms in these cell lines are different.
View Article and Find Full Text PDF

Skeletal muscle differentiation, maturation, and regeneration are regulated by interactions between signaling pathways activated by hormones and growth factors, and intrinsic genetic programs controlled by myogenic transcription factors, including members of the MyoD and myocyte enhancer factor 2 (MEF2) families. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo, and in the maintenance and hypertrophy of mature muscle in the adult, but the precise signaling pathways responsible for these effects remain incompletely defined. To study mechanisms of IGF action in muscle, we have developed a mouse myoblast cell line termed C2BP5 that is dependent on activation of the IGF-I receptor and the phosphatidyl inositol 3-kinase (PI3-kinase)-Akt pathway for initiation of differentiation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbstlt582s1ebvbj00sgeejf08r9qi19g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once