Both natural enzymatic systems and synthetic porous material catalysts utilize well-defined and uniform channels to dictate reaction selectivities on the basis of size or shape. Mimicry of this design element in homogeneous systems is generally difficult owing to the flexibility inherent in most small molecular species. Herein, we report the synthesis of a tripodal ligand scaffold that orients a narrow and rigid cavity atop accessible metal coordination space.
View Article and Find Full Text PDFConsiderable efforts are being made to find cheaper and more efficient alternatives to the currently commercially available catalysts based on precious metals for the Hydrogen Evolution Reaction (HER). In this context, fullerenes have started to gain attention due to their suitable electronic properties and relatively easy functionalization. We found that the covalent functionalization of C, C and ScN@C with diazonium salts endows the fullerene cages with ultra-active charge polarization centers, which are located near the carbon-diazonium bond and improve the efficiency towards the molecular generation of hydrogen.
View Article and Find Full Text PDF