Respiratory syncytial virus (RSV) is an RNA virus infecting the upper and lower respiratory tract and is recognized as a major respiratory health threat, particularly to older adults, immunocompromised individuals, and young children. Around 64 million children and adults are infected every year worldwide. Despite two vaccines and a new generation monoclonal antibody recently approved, no effective antiviral treatment is available.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a seasonal virus that infects the lungs and airways of 64 million children and adults every year. It is a major cause of acute lower respiratory tract infection and is associated with significant morbidity and mortality. Despite the large medical and economic burden, treatment options for RSV-associated bronchiolitis and pneumonia are limited and mainly consist of supportive care.
View Article and Find Full Text PDFIn the search for novel influenza inhibitors we evaluated 7-fluoro-substituted indoles as bioisosteric replacements for the 7-azaindole scaffold of Pimodivir, a PB2 (polymerase basic protein 2) inhibitor currently in clinical development. Specifically, a 5,7-difluoroindole derivative was identified as a potent and metabolically stable influenza inhibitor. demonstrated a favorable oral pharmacokinetic profile and in vivo efficacy in mice.
View Article and Find Full Text PDFRespiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure-activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors.
View Article and Find Full Text PDFInfection with human respiratory syncytial virus (hRSV) causes a wide spectrum of respiratory disease in infants, young children, and elderly persons. No vaccine is available today and hRSV treatment options are limited. As a consequence, the treatment of hRSV infection remains largely supportive and new therapeutic options are needed to treat severe lower respiratory tract hRSV disease.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2009
The efficacy of ATP synthase inhibitor TMC207 was assessed in early and late Mycobacterium avium infections in mice. In contrast to what was earlier observed for M. tuberculosis, a bacteriostatic effect was obtained.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2008
New drugs are needed to shorten the duration of tuberculosis treatment. R207910, a diarylquinoline, is very active against Mycobacterium tuberculosis both in vitro and in mice. In healthy volunteers, the coadministration of R207910 and rifampin induced the increased metabolism of R207910, resulting in a 50% reduction in the level of R207910 exposure.
View Article and Find Full Text PDFThe levels of TMC207 (R207910) that can be reached in mouse organs and the sputa of treated patients easily exceed the MIC of the compound and can therefore interfere with in vitro bacterial titrations. We studied the usefulness of protein-enriched media for the prevention of such drug carryover effects. The average MIC of Mycobacterium tuberculosis was determined on three different media: unsupplemented 7H11 agar (MIC = 0.
View Article and Find Full Text PDF