Publications by authors named "Joke Hollants"

Background: Imbalanced feeding regimes may initiate gastrointestinal and metabolic diseases in endangered felids kept in captivity such as cheetahs. Given the crucial role of the host's intestinal microbiota in feed fermentation and health maintenance, a better understanding of the cheetah's intestinal ecosystem is essential for improvement of current feeding strategies. We determined the phylogenetic diversity of the faecal microbiota of the only two cheetahs housed in an EAZA associated zoo in Flanders, Belgium, to gain first insights in the relative distribution, identity and potential role of the major community members.

View Article and Find Full Text PDF

The siphonous green seaweed Bryopsis harbors complex intracellular bacterial communities. Previous studies demonstrated that certain species form close, obligate associations with Flavobacteriaceae. A predominant imprint of host evolutionary history on the presence of these bacteria suggests a highly specialized association.

View Article and Find Full Text PDF

The ecological success of giant celled, siphonous green algae in coastal habitats has repeatedly been linked to endophytic bacteria living within the cytoplasm of the hosts. Yet, very little is known about the relative importance of evolutionary and ecological factors controlling the intracellular bacterial flora of these seaweeds. Using the marine alga Bryopsis (Bryopsidales, Chlorophyta) as a model, we explore the diversity of the intracellular bacterial communities and investigate whether their composition is controlled by ecological and biogeographic factors rather than the evolutionary history of the host.

View Article and Find Full Text PDF

Many eukaryotes are closely associated with bacteria which enable them to expand their physiological capacities. Associations between algae (photosynthetic eukaryotes) and bacteria have been described for over a hundred years. A wide range of beneficial and detrimental interactions exists between macroalgae (seaweeds) and epi- and endosymbiotic bacteria that reside either on the surface or within the algal cells.

View Article and Find Full Text PDF

Background: The siphonous green macroalga Bryopsis has some remarkable characteristics. Besides hosting a rich endophytic bacterial flora, Bryopsis also displays extraordinary wound repair and propagation mechanisms. This latter feature includes the formation of protoplasts which can survive in the absence of a cell membrane for several minutes before regenerating into new individuals.

View Article and Find Full Text PDF

Associations between marine seaweeds and bacteria are widespread, with endobiotic bacterial-algal interactions being described for over 40 years. Also within the siphonous marine green alga Bryopsis, intracellular bacteria have been visualized by electron microscopy in the early '70s, but were up to now never molecularly analyzed. To study this partnership, we examined the presence and phylogenetic diversity of microbial communities within the cytoplasm of two Bryopsis species by combining fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries.

View Article and Find Full Text PDF