Publications by authors named "Johnsson J"

Background: Paraoxonase-1 (PON-1) has been suggested as a marker of inflammation and oxidative stress in horses and could potentially be used for prognostication in horses with colitis.

Objectives: Assessment of PON-1 in horses with colitis and comparison of two methods.

Methods: Serum PON-1 was measured by two methods (paraoxon and p-nitrophenyl acetate) in 161 horses with colitis and 57 controls.

View Article and Find Full Text PDF

Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which triplet excitons combine to form emissive singlets and holds great promise in biological applications and for improving the spectral match in solar energy conversion. While high TTA-UC quantum yields have been reported for, for example, red-to-green TTA-UC systems, there are only a few examples of visible-to-ultraviolet (UV) transformations in which the quantum yield reaches 10%. In this study, we investigate the performance of six annihilators when paired with the sensitizer 2,3,5,6-tetra(9-carbazol-9-yl)benzonitrile (4CzBN), a purely organic compound that exhibits thermally activated delayed fluorescence.

View Article and Find Full Text PDF

Use of fast-growing domesticated and/or genetically modified strains of fish is becoming increasingly common in aquaculture, increasing the likelihood of deliberate or accidental introductions into the wild. To date, their ecological impacts on ecosystems remain to be quantified. Here, using a controlled phenotype manipulation by implanting growth hormone in juvenile Atlantic salmon (Salmo salar), we found that growth-enhanced fish display changes in several phenotypic traits known to be important for ecosystem functioning, such as habitat use, morphology and excretion rate.

View Article and Find Full Text PDF

Background: Prognostication of neurological outcome in patients who remain comatose after cardiac arrest resuscitation is complex. Clinical variables, as well as biomarkers of brain injury, cardiac injury, and systemic inflammation, all yield some prognostic value. We hypothesised that cumulative information obtained during the first three days of intensive care could produce a reliable model for predicting neurological outcome following out-of-hospital cardiac arrest (OHCA) using artificial neural network (ANN) with and without biomarkers.

View Article and Find Full Text PDF

Background: Pre-hospital circumstances, cardiac arrest characteristics, comorbidities and clinical status on admission are strongly associated with outcome after out-of-hospital cardiac arrest (OHCA). Early prediction of outcome may inform prognosis, tailor therapy and help in interpreting the intervention effect in heterogenous clinical trials. This study aimed to create a model for early prediction of outcome by artificial neural networks (ANN) and use this model to investigate intervention effects on classes of illness severity in cardiac arrest patients treated with targeted temperature management (TTM).

View Article and Find Full Text PDF

Introduction: Targeted temperature management (TTM) after out-of-hospital cardiac arrest (OHCA) has been recommended in international guidelines since 2005. The TTM-trial published in 2013 showed no difference in survival or neurological outcome for patients randomised to 33 °C or 36 °C, and many hospitals have changed practice. The optimal utilization of TTM is still debated.

View Article and Find Full Text PDF

Background: New strategies for collecting post-mortem tissue are necessary, particularly in areas with emerging infections. Minimally invasive autopsy (MIA) has been proposed as an alternative to conventional autopsy (CA), with promising results. Previous studies using MIA addressed the cause of death in adults and children in developing countries.

View Article and Find Full Text PDF

When animals are reared for conservational releases it is paramount to avoid reducing genetic and phenotypic variation over time. This requires an understanding of how diverging behavioural and physiological traits affect performance both in captivity and after release. In Atlantic salmon, emergence time from the spawning gravel has been linked to certain behavioural and physiological characteristics and to the concept of stress coping styles.

View Article and Find Full Text PDF

Abstract: Animals generally adjust their behavior in response to bodily state (e.g., size and energy reserves) to optimize energy intake in relation to mortality risk, weighing predation probability against the risk of starvation.

View Article and Find Full Text PDF

Theory suggests that high activity levels in animals increase growth at the cost of increased mortality. This growth-mortality tradeoff has recently been incorporated into the wider framework of the pace-of-life syndrome (POLS) hypothesis. However, activity is often quantified only in the laboratory and on a diurnal basis, leaving open the possibility that animals manage predation risk and feeding efficiency in the wild by modulating their circadian activity rhythms.

View Article and Find Full Text PDF

The prevalence of consistent among-individual differences in behaviour, or personality, makes adaptive sense if individuals differ in stable state variables that shift the balance between the costs and benefits of their behavioural decisions. These differences may give rise to both individual differences in, and covariance among, behaviours that influence an individual's exposure to risks. We here study the link between behaviour and a candidate state variable previously overlooked in the study of state-dependent personality variation: telomere length.

View Article and Find Full Text PDF

Many animals, including fish, can utilize both vision and the chemical senses in intra-specific communication. However, the relative influence of these sensory modalities on behavioral and physiological responses in social interactions is not well understood. The aim of this study was therefore to investigate the relative effects of visual and chemical stimuli from dominant individuals on the behavioral and physiological responses of subordinate rainbow trout (Oncorhynchus mykiss).

View Article and Find Full Text PDF

Background: Individuals rarely grow as fast as their physiologies permit despite the fitness advantages of being large. One reason may be that rapid growth is costly, resulting for example in somatic damage. The chromosomal ends, the telomeres, are particularly vulnerable to such damage, and telomere attrition thus influences the rate of ageing.

View Article and Find Full Text PDF

Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild.

View Article and Find Full Text PDF

After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring.

View Article and Find Full Text PDF

Why do captive-reared fishes generally have lower fitness in natural environments than wild conspecifics, even when the hatchery fishes are derived from wild parents from the local population? A thorough understanding of this question is the key to design artificial rearing environments that optimize post-release performance, as well as to recognize the limitations of what can be achieved by modifying hatchery rearing methods. Fishes are generally very plastic in their development and through gene-environment interactions, epigenetic and maternal effects their phenotypes will develop differently depending on their rearing environment. This suggests that there is scope for modifying conventional rearing environments to better prepare fishes for release into the wild.

View Article and Find Full Text PDF

The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage.

View Article and Find Full Text PDF

Several key functions of ghrelin are well conserved through vertebrate phylogeny. However, some of ghrelin's effects are contradictory and among teleosts only a limited number of species have been used in functional studies on food intake and foraging-related behaviors. Here we investigated the long-term effects of ghrelin on food intake, growth, swimming activity and aggressive contest behavior in one year old wild brown trout (Salmo trutta) using intraperitoneal implants.

View Article and Find Full Text PDF

Ongoing climate change has led to an increase in sea surface temperatures of 2-4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.

View Article and Find Full Text PDF

Density-dependence is a major ecological mechanism that is known to limit individual growth. To examine if compensatory growth (unusually rapid growth following a period of imposed slow growth) in nature is density-dependent, one-year-old brown trout (Salmo trutta L.) were first starved in the laboratory, and then released back into their natural stream, either at natural or at experimentally increased population density.

View Article and Find Full Text PDF

While the prevalence of density-dependence is well-established in population ecology, few field studies have investigated its underlying mechanisms and their relative population-level importance. Here, we address these issues, and more specifically, how differences in body-size influence population regulation. For this purpose, two experiments were performed in a small coastal stream on the Swedish west coast, using juvenile brown trout (Salmo trutta) as a study species.

View Article and Find Full Text PDF

Individuals often show consistent behavioural differences where behaviours can form integrated units across functionally different contexts. However, the factors causing and maintaining behavioural syndromes in natural populations remain poorly understood. In this study, we provide evidence for the emergence of a behavioural syndrome during the first months of life in wild brown trout (Salmo trutta).

View Article and Find Full Text PDF

Growth hormone (GH) transgenic fish have dramatically enhanced growth rates, increased oxygen demands and reactive oxygen species production. GH-transgenic coho salmon provide an opportunity to address effects of increased metabolism on physiological aging. The objective of this study was to compare oxidative stress in wild-type (WT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch) of different ages (1 and 2 years).

View Article and Find Full Text PDF