The p53 protein has been known to exist structurally in three different forms inside the cells. Earlier studies have reported the predominance of the lower oligomeric forms of p53 over its tetrameric form inside the cells, although only the tetrameric p53 contributes to its transcriptional activity. However, it remains unclear the functional relevance of the existence of other p53 oligomers inside the cells.
View Article and Find Full Text PDFTranscriptional activity of p53 is modulated by various posttranslational modifications. Earlier studies have reported that Aurora B phosphorylation of p53 leads to loss of its transcriptional activity, subsequently leading to its ubiquitin-mediated proteasomal degradation. To decipher the fate of structural and functional stature of p53 upon phosphorylation by Aurora B, we have generated five phosphomimetic mutants of p53 core domain and characterized their biophysicochemical properties.
View Article and Find Full Text PDF