Publications by authors named "Johnson J GadElkarim"

Understanding the modularity of functional magnetic resonance imaging (fMRI)-derived brain networks or "connectomes" can inform the study of brain function organization. However, fMRI connectomes additionally involve negative edges, which may not be optimally accounted for by existing approaches to modularity that variably threshold, binarize, or arbitrarily weight these connections. Consequently, many existing Q maximization-based modularity algorithms yield variable modular structures.

View Article and Find Full Text PDF

Advances in resting state fMRI and diffusion weighted imaging (DWI) have led to much interest in studies that evaluate hypotheses focused on how brain connectivity networks show variations across clinically disparate groups. However, various sources of error (e.g.

View Article and Find Full Text PDF

In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages.

View Article and Find Full Text PDF

In this study, we propose a framework to map functional MRI (fMRI) activation signals using DTI-tractography. This framework, which we term functional by structural hierarchical (FSH) mapping, models the regional origin of fMRI brain activation to construct "N-step reachable structural maps". Linear combinations of these N-step reachable maps are then used to predict the observed fMRI signals.

View Article and Find Full Text PDF

We propose a framework for quantifying node-level community structures between groups using anatomical brain networks derived from DTI-tractography. To construct communities, we computed hierarchical binary trees by maximizing two metrics: the well-known modularity metric (Q), and a novel metric that measures the difference between inter-community and intra-community path lengths. Changes in community structures on the nodal level were assessed between generated trees and a statistical framework was developed to detect local differences between two groups of community structures.

View Article and Find Full Text PDF