Publications by authors named "Johno Breeze"

Terrorist events in the form of explosive devices have occurred and remain a threat currently to the population and the infrastructure of many nations worldwide. Injuries occur from a combination of a blast wave, energised fragments, blunt trauma and burns. The relative preponderance of each injury mechanism is dependent on the type of device, distance to targets, population density and the surrounding environment, such as an enclosed space, to name but a few.

View Article and Find Full Text PDF

Analysing morbidity and using this to improve the quality of patient care is an important component of clinical governance. Several methods of data collection and clinical analysis have been suggested, but to date none have been widely adopted. All adult patients sustaining facial fractures were prospectively identified between 01 March 2019 and 28 February 2020, and matched to those who required a return to theatre for surgical complications.

View Article and Find Full Text PDF

Developments in military personal armour have aimed to achieve a balance between anatomical coverage, protection and mobility. When death is likely to occur within 60 min of injury to anatomical structures without damage control surgery, then these anatomical structures are defined as '' However, the medical terminology used to describe coverage is challenging to convey in a Systems Requirements Document (SRD) for acquisition of new armour and to ultimately translate to the correct sizing and fitting of personal armour. Many of those with Ministry of Defence responsible for the procurement of personal armour and thereby using SRDs will likely have limited medical knowledge; therefore, the potentially complex medical terminology used to describe the anatomical boundaries must be translated into easily recognisable and measurable external landmarks.

View Article and Find Full Text PDF

Penetrating injuries are commonly inflicted in attacks with explosive devices. The extremities, and especially the leg, are the most commonly affected body areas, presenting high risk of infection, slow recovery, and threat of amputation. The aim of this study was to quantify the risk of fracture to the anteromedial, posterior, and lateral aspects of the tibia from a metal fragment-simulating projectile (FSP).

View Article and Find Full Text PDF

Introduction: Side plates are worn by UK Armed Forces as part of the VIRTUS body armour and load carriage systems to protect the thorax and abdomen from high-velocity threats. The VIRTUS project has provided the impetus to objectively demonstrate the anatomical coverage provided by side plates.

Method: CT scans of 120 male UK Armed Forces personnel were analysed to ascertain the vertical distance between the anterior axillary fold and iliac crest, and horizontal distance between anterior and posterior borders of the liver, delineating the boundaries of essential medical coverage from the side aspects.

View Article and Find Full Text PDF

Introduction: Severe haemorrhage from the arm that is unresponsive to direct pressure necessitates the application of a tourniquet. Detachable arm protection, referred to as brassards, are used by the UK Armed Forces to protect the upper arm from fragmentation threats. However, the coverage they originally provided was based on limited medical evidence.

View Article and Find Full Text PDF

Penetrating injuries due to fragments energised by an explosive event are life threatening and are associated with poor clinical and functional outcomes. The tibia is the long bone most affected in survivors of explosive events, yet the risk of penetrating injury to it has not been quantified. In this study, an injury-risk assessment of penetrating injury to the tibia was conducted using a gas-gun system with a 0.

View Article and Find Full Text PDF

Injury modelling of ballistic threats is a valuable tool for informing policy on personal protective equipment and other injury mitigation methods. Currently, the Ministry of Defence (MoD) and Centre for Protection of National Infrastructure (CPNI) are focusing on the development of three interlinking numerical models, each of a different fidelity, to answer specific questions on current threats. High-fidelity models simulate the physical events most realistically, and will be used in the future to test the medical effectiveness of personal armour systems.

View Article and Find Full Text PDF

Introduction: Defining the minimum anatomical structural coverage required to protect from ballistic threats is necessary to enable objective comparisons between body armour designs. Current protection for the axilla and arm is in the form of brassards, but no evidence exists to justify the coverage that should be provided by them.

Method: A systematic review was undertaken to ascertain which anatomical components within the arm or axilla would be highly likely to lead to either death within 60 min or would cause significant long-term morbidity.

View Article and Find Full Text PDF

Introduction: Modern body armour clearly reduces injury incidence and severity, but evidence to actually objectively demonstrate this effect is scarce. Although the Joint Theatre Trauma Registry (JTTR) alone cannot relate injury pattern to body armour coverage, the addition of computerised Surface Wound Mapping (SWM) may enable this utility.

Method: Surface wound locations of all UK and NATO coalition soldiers, Afghan National Army and Police and local nationals injured by explosively propelled fragments and treated in the Role 3 UK-led Field Hospital in Camp Bastion, Afghanistan, between 8 July and 20 October 2012 were prospectively recorded.

View Article and Find Full Text PDF

Introduction: Neck injuries sustained by UK service personnel serving on current operations from explosively propelled fragments result in significant mortality and long-term morbidity. Many of these injuries could potentially have been prevented had the soldiers been wearing their issued neck collars at the time of injury. The aim of this research is to develop an accurate method of predicting the resultant damage to cervical neurovascular structures from explosively propelled fragments.

View Article and Find Full Text PDF