Inhalation anthrax is the most severe form of infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease.
View Article and Find Full Text PDFThe use of antibiotics is a vital means of treating infections caused by the bacteria . Importantly, with the potential future use of multidrug-resistant strains of as bioweapons, new antibiotics are needed as alternative therapeutics. In this blinded study, we assessed the protective efficacy of teixobactin, a recently discovered antibiotic, against inhalation anthrax infection in the adult rabbit model.
View Article and Find Full Text PDFBackground: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited.
View Article and Find Full Text PDFThe national blueprint for biodefense concluded that the United States is underprepared for biological threats. The licensed anthrax vaccine absorbed vaccine, BioThrax, requires administration of at least 3-5 intramuscular doses. The anthrax vaccine absorbed vaccine consists of complex cell-free culture filtrates of a toxigenic strain and causes tenderness at the injection site and significant adverse events.
View Article and Find Full Text PDFLeukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay.
View Article and Find Full Text PDFNative cholera toxin (CT) and its mutated form (CT-2*) without ADP-ribosyltransferase activity differ in their immunomodulatory effects on host cells, and the mechanisms of these differences are poorly understood. In this study, we demonstrated that CT-2* induced higher levels of cytokine production and down-regulated ex-vivo apoptosis of splenocytes from C57BL/6 mice. After exposure of the splenocytes ex-vivo to CT or CT-2* (2μg/ml) for 48h, CT-2* stimulated expression of the toll-like receptor (TLR-4) gene was much higher and the cells produced increased levels of interleukin (IL)-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, compared to splenocytes of mice exposed to native CT.
View Article and Find Full Text PDFCurrently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.
View Article and Find Full Text PDFMelioidosis is an endemic disease caused by the bacterium Burkholderia pseudomallei. Concerns exist regarding B. pseudomallei use as a potential bio-threat agent causing persistent infections and typically manifesting as severe pneumonia capable of causing fatal bacteremia.
View Article and Find Full Text PDFAntibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF), an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin's basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity.
View Article and Find Full Text PDFEdema factor (EF) toxin of Bacillus anthracis (NIAID category A), and several other toxins from NIAID category B Biodefense target bacteria are adenylyl cyclases or adenylyl cyclase agonists that catalyze the conversion of ATP to 3',5'-cyclic adenosine monophosphate (cAMP). We previously identified compound 1 (3-[(9-oxo-9H-fluorene-1-carbonyl)-amino]-benzoic acid), that inhibits EF activity in cultured mammalian cells, and reduces diarrhea caused by enterotoxigenic Escherichia coli (ETEC) at an oral dosage of 15μg/mouse. Here, molecular docking was used to predict improvements in potency and solubility of new derivatives of compound 1 in inhibiting edema toxin (ET)-catalyzed stimulation of cyclic AMP production in murine monocyte-macrophage cells (RAW 264.
View Article and Find Full Text PDFAnthrax lethal toxin (LeTx) and edema toxin (EdTx) have been shown to alter hemodynamics in the rodent model, while LeTx primarily is reported to induce extensive tissue pathology. However, the rodent model has limitations when used for comparison to higher organisms such as humans. The rabbit model, on the other hand, has gained recognition as a useful model for studying anthrax infection and its pathophysiological effects.
View Article and Find Full Text PDFNatural killer (NK) cells have innate antibacterial activity that could be targeted for clinical interventions for infectious disease caused by naturally occurring or weaponized bacterial pathogens. To determine a potential role for NK cells in immunity to Bacillus anthracis, we utilized primary human and murine NK cells, in vitro assays, and in vivo NK cell depletion in a murine model of inhalational anthrax. Our results demonstrate potent antibacterial activity by human NK cells against B.
View Article and Find Full Text PDFBackground: Heart failure is a critical condition that affects many people and often results from left ventricular dysfunction. Numerous studies investigating this condition have been performed using various model systems. To do so, investigators must be able to accurately measure myocardial performance in order to determine the degree of left ventricular function.
View Article and Find Full Text PDFThe Gram-negative plague bacterium, Yersinia pestis, has historically been regarded as one of the deadliest pathogens known to mankind, having caused three major pandemics. After being transmitted by the bite of an infected flea arthropod vector, Y. pestis can cause three forms of human plague: bubonic, septicemic, and pneumonic, with the latter two having very high mortality rates.
View Article and Find Full Text PDFWe evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule.
View Article and Find Full Text PDFSuccessful treatment of inhalation anthrax, pneumonic plague and tularemia can be achieved with fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, and initiation of treatment is most effective when administered as soon as possible following exposure. Bacillus anthracis Ames, Yersinia pestis CO92, and Francisella tularensis SCHU S4 have equivalent susceptibility in vitro to ciprofloxacin and levofloxacin (minimal inhibitory concentration is 0.03 μg/ml); however, limited information is available regarding in vivo susceptibility of these infectious agents to the fluoroquinolone antibiotics in small animal models.
View Article and Find Full Text PDFInhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2).
View Article and Find Full Text PDFAnthrax edema toxin (ET), a powerful adenylyl cyclase, is an important virulence factor of Bacillus anthracis. Until recently, only a modest amount of research was performed to understand the role this toxin plays in the organism's immune evasion strategy. A new wave of studies have begun to elucidate the effects this toxin has on a variety of host cells.
View Article and Find Full Text PDFEnterotoxigenic Escherichia coli (ETEC) produces the ADP-ribosyltransferase toxin known as heat-labile enterotoxin (LT). In addition to the toxic effect of LT resulting in increases of cyclic AMP (cAMP) and disturbance of cellular metabolic processes, this toxin promotes bacterial adherence to intestinal epithelial cells (A. M.
View Article and Find Full Text PDFRecombinant Sindbis viruses were engineered to express alternative forms of the protective antigen (PA) of Bacillus anthracis. The recombinant viruses induced PA-specific immunoglobulin G and neutralizing antibodies in Swiss Webster mice. Vaccination with the recombinant viruses induced immunity that offered some protection from a lethal Ames strain spore challenge and synergized the protective effects of ciprofloxacin.
View Article and Find Full Text PDFBacillus anthracis, the causative agent of anthrax, is a category A priority pathogen that causes extensive damage in humans. For this reason, B. anthracis has been the focus of numerous studies using various animal models.
View Article and Find Full Text PDFGranulysin is a cationic protein produced by human T cells and natural killer cells that can kill bacterial pathogens through disruption of microbial membrane integrity. Herein we demonstrate antimicrobial activity of the granulysin peptide derived from the active site against Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Burkholderia mallei, and show pathogen-specific differences in granulysin peptide effects. The susceptibility of Y.
View Article and Find Full Text PDFPneumonia is a serious problem worldwide. We recently demonstrated that innate defense mechanisms of the lung are highly inducible against pneumococcal pneumonia. To determine the breadth of protection conferred by stimulation of lung mucosal innate immunity, and to identify cells and signaling pathways activated by this treatment, mice were treated with an aerosolized bacterial lysate, then challenged with lethal doses of bacterial and fungal pathogens.
View Article and Find Full Text PDFBacillus anthracis, the etiological agent of anthrax, is a gram-positive spore-forming bacterium. It produces edema toxin (EdTx), a powerful adenylate cyclase that increases cyclic AMP (cAMP) levels in host cells. Because other cAMP-increasing agents inhibit key macrophage (MPhi) functions, such as phagocytosis, it was hypothesized that EdTx would exhibit similar suppressive activities.
View Article and Find Full Text PDF