Publications by authors named "Johnny Ching-Wei Lee"

A structure-property-process relation is established for a diblock bottlebrush copolymer solution, through a combination of rheo-neutron scattering, imaging, and rheological measurements. Polylactic acid-b-polystyrene diblock bottlebrush copolymers were dispersed in toluene with a concentration of 175 mg ml, where they self-assembled into a lamellar phase. All measurements were carried out at 5 °C.

View Article and Find Full Text PDF

Fibrin gels have been extensively used for three-dimensional cell culture, bleeding control, and molecular and cell therapies because the fibrous networks facilitate biomolecular and cell transport. However, a small window for gelation makes it difficult to handle the gels for desired preparation and transport. Several methods developed to control gelation rates often alter the microstructure, thereby affecting the mechanical response.

View Article and Find Full Text PDF

Rheological measurements in which the applied stress or strain is oscillated are widely used to interrogate viscoelastic properties due to the independent control over the time scale and length scale afforded by changes in amplitude and frequency. Taking a nontraditional approach, we treat stress-controlled oscillatory tests as creep tests with transiently varying stress and apply an analysis typically used for steady creep and recovery experiments. Defining zero strain as the state prior to external shearing, it is shown that strain responses to small-amplitude oscillatory stressing are naturally shifted from the starting point by an amount proportional to the phase of the applied stress.

View Article and Find Full Text PDF

The recoverable strain is shown to correlate to the temporal evolution of microstructure via time-resolved small-angle neutron scattering and dynamic shear rheology. Investigating two distinct polymeric materials of wormlike micelles and fibrin network, we demonstrate that, in addition to the nonlinear structure-property relationships, the shear and normal stress evolution is dictated by the recoverable strain. A distinct sequence of physical processes under large amplitude oscillatory shear (LAOS) is identified that clearly contains information regarding both the steady-state flow curve and the linear-regime frequency sweep, contrary to most interpretations that LAOS responses are either distinct from or somehow intermediate between the two cases.

View Article and Find Full Text PDF

Understanding how microscopic rearrangements manifest in macroscopic flow responses is one of the central goals of nonlinear rheological studies. Using the sequence-of-physical-processes framework, we present a natural 3D structure-rheology space that temporally correlates the structural and nonlinear viscoelastic parameters. Exploiting the rheo-small-angle neutron scattering (rheo-SANS) techniques, we demonstrate the use of the framework with a model system of polymer-like micelles (PLMs), where we unveil a sequence of microscopic events that micelles experience under dynamic shearing across a range of frequencies.

View Article and Find Full Text PDF

We investigate the sequence of physical processes exhibited during large amplitude oscillatory shearing (LAOS) of polyethylene oxide (PEO) in dimethyl sulfoxide (DMSO) and xanthan gum in water - two concentrated polymer solutions used as viscosifiers in foods, enhanced oil recovery, and soil remediation. Understanding the nonlinear rheological behavior of soft materials is important in the design and controlled manufacturing of many consumer products. It is shown how the response to LAOS of these polymer solutions can be interpreted in terms of a clear transition from linear viscoelasticity to viscoplastic deformation and back again during a period.

View Article and Find Full Text PDF

The diverse requirements of hydrogels for tissue engineering motivate the development of cross-linking reactions to fabricate hydrogel networks with specific features, particularly those amenable to the activity of biological materials (e.g., cells, proteins) that do not require exposure to UV light.

View Article and Find Full Text PDF