Folic acid supplementation is a promising approach for patients with cardiovascular diseases associated with hyperhomocysteinemia. We have demonstrated that homocysteine (Hcy) activates nuclear factor-kappaB (NF-kappaB), a transcription factor that plays an important role in inflammatory responses. The aim of the present study was to investigate the effect of folic acid on Hcy-induced NF-kappaB activation in macrophages.
View Article and Find Full Text PDFThe exaggerated flux through polyol pathway during diabetes is thought to be a major cause of lesions in the peripheral nerves. Here, we used aldose reductase (AR)-deficient (AR(-/-)) and AR inhibitor (ARI)-treated mice to further understand the in vivo role of polyol pathway in the pathogenesis of diabetic neuropathy. Under normal conditions, there were no obvious differences in the innervation patterns between wild-type AR (AR(+/+)) and AR(-/-) mice.
View Article and Find Full Text PDFHyperhomocysteinemia is an independent risk factor for cardiovascular diseases. Our previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-kappaB) activation and homocysteine (Hcy)-induced chemokine expression in vascular smooth muscle cells and macrophages. The objective of the present study was to investigate the in vivo effect of hyperhomocysteinemia on NF-kappaB activation and the underlying mechanism of Hcy-induced NF-kappaB activation in endothelial cells.
View Article and Find Full Text PDF