The fruit fly, , is an experimentally tractable model system that has recently emerged as a powerful "new approach methodology" (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of fecundity can be useful for identifying chemicals that affect reproductive health across species. However, standard fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results.
View Article and Find Full Text PDFMeasurements of Drosophila fecundity are used in a wide variety of studies, such as investigations of stem cell biology, nutrition, behavior, and toxicology. In addition, because fecundity assays are performed on live flies, they are suitable for longitudinal studies such as investigations of aging or prolonged chemical exposure. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results.
View Article and Find Full Text PDF