Background: In this study, we investigated the feasibility of quantitative ultrashort echo time (qUTE) magnetic resonance (MR) imaging techniques in the detection and quantification of iron oxide nanoparticle (IONP)-labeled stem cells.
Methods: A stem cell phantom containing multiple layers of unlabeled or labeled stem cells with different densities was prepared. The phantom was imaged with quantitative UTE (qUTE) MR techniques [i.
Extracell Vesicles Circ Nucl Acids
December 2020
Technology platforms that afford biomarker discovery in patients suffering from traumatic brain injury (TBI) remain an unmet medical need. Here, we describe an observational pilot study to explore the utility of an alternating current electrokinetic (ACE) microchip device in this context. Blood samples were collected from participating subjects with and without minor TBI.
View Article and Find Full Text PDFBackground: Recurrence after radiation therapy is nearly universal for glioblastomas, the most common form of adult brain cancer. The study aims to define clinically pertinent mechanisms underlying this recurrence.
Methods: microRNA (miRNA) profiling was performed using matched pre- and post-radiation treatment glioblastoma specimens from the same patients.
Extracellular vesicles (EVs) are small, membrane-bound particles released by all cells that have emerged as an attractive biomarker platform. We study the utility of a dielectrophoretic (DEP) micro-chip device for isolation and characterization of EVs derived from plasma specimens from patients with brain tumors. EVs were isolated by DEP chip and subjected to on-chip immunofluorescence (IF) staining to determine the concentration of glial fibrillary acidic protein (GFAP) and Tau.
View Article and Find Full Text PDFExosomes can mediate a dynamic method of communication between malignancies, including those sequestered in the central nervous system and the immune system. We sought to determine whether exosomes from glioblastoma (GBM)-derived stem cells (GSCs) can induce immunosuppression. We report that GSC-derived exosomes (GDEs) have a predilection for monocytes, the precursor to macrophages.
View Article and Find Full Text PDFPurpose: To develop a cerebrospinal fluid (CSF) miRNA diagnostic biomarker for glioblastoma.
Experimental Design: Glioblastoma tissue and matched CSF from the same patient (obtained prior to tumor manipulation) were profiled by TaqMan OpenArray Human MicroRNA Panel. CSF miRNA profiles from glioblastoma patients and controls were created from three discovery cohorts and confirmed in two validation cohorts.
The current treatment of glioblastoma multiforme (GBM) is limited by the restricted arsenal of agents which effectively cross the blood brain barrier (BBB). For example, only a fraction of temozolomide (TMZ) administered systemically is available for therapeutic effect because of the BBB and the instability of TMZ under physiologic conditions. A novel approach to overcome this obstacle is to bypass the BBB and locally deliver chemotherapeutic agents directly to the tumor mass.
View Article and Find Full Text PDFWe examined the extracellular vesicle (EV) and RNA composition of pooled normal cerebrospinal fluid (CSF) samples and CSF from five major neurological disorders: Alzheimer's disease (AD), Parkinson's disease (PD), low-grade glioma (LGG), glioblastoma multiforme (GBM), and subarachnoid haemorrhage (SAH), representing neurodegenerative disease, cancer, and severe acute brain injury. We evaluated: (I) size and quantity of EVs by nanoparticle tracking analysis (NTA) and vesicle flow cytometry (VFC), (II) RNA yield and purity using four RNA isolation kits, (III) replication of RNA yields within and between laboratories, and (IV) composition of total and EV RNAs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing (RNASeq). The CSF contained ~106 EVs/μL by NTA and VFC.
View Article and Find Full Text PDFExosomes found in the circulation are a primary source of important cancer-related RNA and protein biomarkers that are expected to lead to early detection, liquid biopsy, and point-of-care diagnostic applications. Unfortunately, due to their small size (50-150 nm) and low density, exosomes are extremely difficult to isolate from plasma. Current isolation methods are time-consuming multistep procedures that are unlikely to translate into diagnostic applications.
View Article and Find Full Text PDFTauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and progressive supranuclear palsy, which are associated with the pathological aggregation of tau protein into neurofibrillary tangles (NFT). Studies have characterized tau as a "prion-like" protein given its ability to form distinct, stable amyloid conformations capable of transcellular and multigenerational propagation in clonal fashion. It has been proposed that progression of tauopathy could be due to the prion-like propagation of tau, suggesting the possibility that end-stage pathologies, like NFT formation, may require an instigating event such as tau seeding.
View Article and Find Full Text PDFBackground: RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR).
View Article and Find Full Text PDFIntroduction: Levels of Alzheimer's disease (AD)-related proteins in plasma neuronal derived exosomes (NDEs) were quantified to identify biomarkers for prediction and staging of mild cognitive impairment (MCI) and AD.
Methods: Plasma exosomes were extracted, precipitated, and enriched for neuronal source by anti-L1CAM antibody absorption. NDEs were characterized by size (Nanosight) and shape (TEM) and extracted NDE protein biomarkers were quantified by ELISAs.
Background: Tumor specific genetic material can be detected in extracellular vesicles (EVs) isolated from blood, cerebrospinal fluid (CSF), and other biofluids of glioblastoma patients. As such, EVs have emerged as a promising platform for biomarker discovery. However, the optimal procedure to transport clinical EV samples remains poorly characterized.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have emerged as a promising biomarker platform for glioblastoma patients. However, the optimal method for quantitative assessment of EVs in clinical bio-fluid remains a point of contention. Multiple high-resolution platforms for quantitative EV analysis have emerged, including methods grounded in diffraction measurement of Brownian motion (NTA), tunable resistive pulse sensing (TRPS), vesicle flow cytometry (VFC), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFAnalysis of extracellular vesicles (EVs) derived from plasma or cerebrospinal fluid (CSF) has emerged as a promising biomarker platform for therapeutic monitoring in glioblastoma patients. However, the contents of the various subpopulations of EVs in these clinical specimens remain poorly defined. Here we characterize the relative abundance of miRNA species in EVs derived from the serum and cerebrospinal fluid of glioblastoma patients.
View Article and Find Full Text PDFThe intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.
View Article and Find Full Text PDFMGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs.
View Article and Find Full Text PDFGlioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2013
Evolutionarily conserved short (20-30 nucleotides) noncoding RNAs (microRNAs) are powerful regulators of gene expression in a variety of physiological and pathological processes. As such, means to efficiently modulate microRNA function constitute an important therapeutic opportunity. Here we demonstrate that primary B lymphocytes can be genetically programmed with nonviral plasmid DNA for the biogenesis and delivery of antisense sequences (anti-microRNA) against microRNA-150 (miR-150).
View Article and Find Full Text PDFGlioblastoma cells secrete extra-cellular vesicles (EVs) containing microRNAs (miRNAs). Analysis of these EV miRNAs in the bio-fluids of afflicted patients represents a potential platform for biomarker development. However, the analytic algorithm for quantitative assessment of EV miRNA remains under-developed.
View Article and Find Full Text PDFBackground: Kawasaki disease is an acute, self-limited vasculitis of childhood that can result in structural damage to the coronary arteries. Previous studies have implicated the TGF-β pathway in disease pathogenesis and generation of myofibroblasts in the arterial wall. microRNAs are small non-coding RNAs that modulate gene expression at the post-transcriptional level and can be transported between cells in extracellular vesicles.
View Article and Find Full Text PDFRecent studies suggest both normal and cancerous cells secrete vesicles into the extracellular space. These extracellular vesicles (EVs) contain materials that mirror the genetic and proteomic content of the secreting cell. The identification of cancer-specific material in EVs isolated from the biofluids (e.
View Article and Find Full Text PDFThe discovery that tumor-derived proteins and nucleic acids can be detected in nano-sized vesicles in the plasma and cerebrospinal fluid of patients afflicted with brain tumors has expanded opportunities for biomarker and therapeutic discovery. Through delivery of their contents to surrounding cells, exosomes, microvesicles, and other nano-sized extracellular vesicles secreted by tumors modulate their environment to promote tumor growth and survival. In this review, we discuss the biological processes mediated by these extracellular vesicles and their applications in terms of brain tumor diagnosis, monitoring, and therapy.
View Article and Find Full Text PDF