Publications by authors named "Johnie Hodge"

Background And Objectives: Intrathecal (IT) medications are routinely introduced through catheterization of the intraventricular space or subarachnoid space. There has been sporadic use of IT medications delivered directly to the ventricle either by intermittent injection through an external ventricular drain (EVD) or by an Ommaya reservoir with a ventricular catheter. IT medication delivery through EVD has many drawbacks, including the necessary opening of a sterile system, delivery of medication in a bolus form, and requirements to clamp the EVD after medication delivery.

View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) is usually performed as an inpatient procedure. The COVID-19 pandemic effected a practice change at our institution with outpatient DBS performed because of limited inpatient and surgical resources. Although this alleviated use of hospital resources, the comparative safety of outpatient DBS surgery is unclear.

View Article and Find Full Text PDF

People instantaneously evaluate faces with significant agreement on evaluations of social traits. However, the neural basis for such rapid spontaneous face evaluation remains largely unknown. Here, we recorded from 490 neurons in the human amygdala and hippocampus and found that the neuronal activity was associated with the geometry of a social trait space.

View Article and Find Full Text PDF

Background: The success of deep brain stimulation (DBS) surgery depends on the accuracy of electrode placement. Several factors can affect this such as brain shift, the quality of preoperative planning, and technical factors. It is crucial to determine whether techniques yield accurate lead placement and effective symptom relief.

View Article and Find Full Text PDF

Spasticity is a major cause of disability following upper motor neuron (UMN) injury. The diagnosis and treatment of spasticity has been a focus of clinicians and researchers alike. In recent years, there have been significant advances both in strategies for spasticity assessment and in the development of novel treatments.

View Article and Find Full Text PDF

microRNA-155 (miR155) is pro-atherogenic; however, its role in vascular calcification is unknown. In this study, we aim to examine whether miR155 regulates vascular calcification and to understand the underlying mechanism. Quantitative real-time PCR showed that miR155 is highly expressed in human calcific carotid tissue and positively correlated with the expression of osteogenic genes.

View Article and Find Full Text PDF

Our previous studies demonstrated that the natural compound emodin blocks the tumor-promoting feedforward interactions between cancer cells and macrophages, and thus ameliorates the immunosuppressive state of the tumor microenvironment. Since tumor-associated macrophages (TAMs) also affect epithelial mesenchymal-transition (EMT) and cancer stem cell (CSC) formation, here we aimed to test if emodin as a neoadjuvant therapy halts breast cancer metastasis by attenuating TAM-induced EMT and CSC formation of breast cancer cells. Bioinformatical analysis was performed to examine the correlation between macrophage abundance and EMT/CSC markers in human breast tumors.

View Article and Find Full Text PDF

Background: Tumor-associated macrophages (TAMs) play key roles in the development of many malignant solid tumors including breast cancer. They are educated in the tumor microenvironment (TME) to promote tumor growth, metastasis, and therapy resistance. However, the phenotype of TAMs is elusive and how to regulate them for therapeutic purpose remains unclear; therefore, TAM-targeting therapies have not yet achieved clinical success.

View Article and Find Full Text PDF

MicroRNA 155 (miR-155) plays important roles in the regulation of the development and functions of a variety of immune cells. We previously revealed a vital role of miR-155 in regulating the function of dendritic cells (DCs) in breast cancer. miR-155 deficiency in DCs impaired their maturation, migration, cytokine production, and ability to activate T cells.

View Article and Find Full Text PDF

Background: Low success rates in oncology drug development are prompting re-evaluation of preclinical models, including orthotopic tumor engraftment. In breast cancer models, tumor cells are typically injected into mouse mammary fat pads (MFP). However, this approach bypasses the epithelial microenvironment, potentially altering tumor properties in ways that affect translational application.

View Article and Find Full Text PDF

Asthma is a chronic inflammatory disease of the airways and the mechanisms are not fully understood. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of monocytes, granulocyte and myeloid cells at early stage of differentiation. They possess phenotypic plasticity and regulate airway inflammation.

View Article and Find Full Text PDF

Tumor microenvironment (TME) contains a variety of infiltrating immune cells. Among them, tumor-associated macrophages (TAMs) and their alternative activation contribute greatly to the progression of tumors. The mechanisms governing macrophage polarization in the TME are unclear.

View Article and Find Full Text PDF

Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration.

View Article and Find Full Text PDF