Publications by authors named "Johnathon Li"

The gill proteome of threespine sticklebacks (Gasterosteus aculeatus) differs greatly in populations that inhabit diverse environments characterized by different temperature, salinity, food availability, parasites, and other parameters. To assess the contribution of a specific environmental parameter to such differences it is necessary to isolate its effects from those of other parameters. In this study the effect of environmental salinity on the gill proteome of G.

View Article and Find Full Text PDF

A data-independent acquisition (DIA) assay library for quantitative analyses of proteome dynamics has been developed for gills of threespine sticklebacks (). A raw spectral library was generated by data-dependent acquisition (DDA) and annotation of tryptic peptides to MSMS spectra and protein database identifiers. The assay library was constructed from the raw spectral library by removal of low-quality, ambiguous, and low-signal peptides.

View Article and Find Full Text PDF

Quantitative proteomics was used to reveal biochemical differences in kidneys of marine and freshwater three-spined sticklebacks. More than 1500 unambiguous proteins were identified, 106 of which are robustly co-translationally modified. Amino-terminal acetylation sites for 94 and proline hydroxylation sites for 12 proteins, including 4 protein disulfide isomerases having the consensus motif APWCGHCK, were determined.

View Article and Find Full Text PDF

Molecular phenotypes that distinguish resident marine (Bodega Harbor) from landlocked freshwater (FW, Lake Solano) three-spined sticklebacks were revealed by label-free quantitative proteomics. Secreted plasma proteins involved in lipid transport, blood coagulation, proteolysis, plasminogen-activating cascades, extracellular stimulus responses, and immunity are most abundant in this species. Globulins and albumins are much less abundant than in mammalian plasma.

View Article and Find Full Text PDF

Protein adduction is considered to be critical to the loss of cellular homeostasis associated with environmental chemicals undergoing metabolic activation. Despite considerable effort, our understanding of the key proteins mediating the pathologic consequences from protein modification by electrophiles is incomplete. This work focused on naphthalene (NA) induced acute injury of respiratory epithelial cells and tolerance which arises after multiple toxicant doses to define the initial cellular proteomic response and later protective actions related to tolerance.

View Article and Find Full Text PDF

The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress.

View Article and Find Full Text PDF

A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus).

View Article and Find Full Text PDF