The RUNX2 transcription factor was discovered as an essential transcriptional regulator for commitment to osteoblast lineage cells and bone formation. Expression of RUNX2 in other tissues, such as breast, prostate, and lung, has been linked to oncogenesis, cancer progression, and metastasis. In this study, we sought to determine the extent of RUNX2 involvement in other tumors using a pan-cancer analysis strategy.
View Article and Find Full Text PDFHigher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs.
View Article and Find Full Text PDF