Publications by authors named "John-Robert Scholz"

Article Synopsis
  • Scientists are studying the inside of Mars to learn how it formed and changed over time, focusing on its deep mantle where certain minerals change under pressure.
  • They found evidence of a special boundary in Mars' mantle using data from NASA's InSight Mission, which helps understand its temperature and composition.
  • Their research suggests that the Martian mantle is colder and contains more iron than Earth's, and they’ve narrowed down possible compositions that match the boundary they observed.
View Article and Find Full Text PDF

A planet's crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces.

View Article and Find Full Text PDF

For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct ( and ) and surface-reflected (, , , and ) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak -wave shadow zone at teleseismic distances.

View Article and Find Full Text PDF

At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity.

View Article and Find Full Text PDF