AAPS PharmSciTech
December 2023
Using a one-factor-at-a-time approach for dissolution method and discrimination analysis can be time-consuming and may not yield the optimal and discriminative method. To address this, we have developed a two-stage workflow for the dissolution method development followed by demonstration of discrimination power through an analytical Quality by Design (aQbD) approach. In the first stage, an optimal dissolution method was achieved by determining the method operable design region (MODR) through a design of experiment study of the high-risk method-related parameters.
View Article and Find Full Text PDFQuantitative NMR (qNMR), being a well-established analytical tool featuring efficiency, simplicity as well as versatility, has been extensively employed in pharmaceutical and medicinal testing. In this study, two H qNMR methods were developed to determine the %wt/wt potency of two new chemical entities (compound A and compound B) used in early clinical phase process chemistry and formulation development. The qNMR methods were demonstrated to be significantly more sustainable and efficient than the LC-based approach by substantially reducing the cost, hands-on-time, and materials consumed for testing.
View Article and Find Full Text PDFStatic headspace capillary gas chromatography (HSGC) has been employed to monitor the level of residual solvents in the pharmaceutical materials. Most of the HSGC methods, however, consume significant amounts of diluents and require considerable amount of sample preparation time. Accordingly, a HSGC method featured with fast turnaround time, and minimal amount of solvent use has been developed for the quantitative analysis of 27 residual solvents frequently used in the development and manufacturing processes of pharmaceutical industry.
View Article and Find Full Text PDFPharmaceutical salts are ubiquitously present in the market given their benefits in optimizing the critical properties of an active pharmaceutical ingredient (API). Achieving these benefits requires careful selection and understanding of the salt form of choice. Stability is especially critical here, as salts are susceptible to disproportionation.
View Article and Find Full Text PDFMechanical loading is integral to the repair of bone damage. Osteocytes are mechanosensors in bone and participate in signaling through gap junction channels, which are primarily comprised of connexin 43 (Cx43). Nitric oxide (NO) and prostaglandin E2 (PGE2) have anabolic and catabolic effects on bone, and the secretion of these molecules occurs after mechanical stimulation.
View Article and Find Full Text PDFSolid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse P NMR linewidth and inverse Raman PO ν bandwidth were both correlated with powder XRD crystallinity over the 0.
View Article and Find Full Text PDFOsteoblasts, which orchestrate the deposition of small apatite crystals through the expression of nucleating proteins, have been shown to also express clock genes associated with the circadian signaling pathway. We hypothesized that protein-mediated bone mineralization may be linked to circadian oscillator mechanisms functioning in peripheral bone tissue. In this study, Per1 expression in ex vivo neonatal murine calvaria organ cultures was monitored for 6 days using a Per1-luciferase transgene as a bioluminescent indicator of clock function.
View Article and Find Full Text PDFThe ability to probe fresh tissue is a key feature to biomedical Raman spectroscopy. However, it is unclear how Raman spectra of calcified tissues are affected by freezing. In this study, six transverse sections of femoral cortical bone were subjected to multiple freeze∕thaw cycles and probed using a custom Raman microscope.
View Article and Find Full Text PDF