Context: After arterial occlusion, diametrical growth of pre-existing natural bypasses around the obstruction, i.e. arteriogenesis, is the body's main coping mechanism.
View Article and Find Full Text PDFAmphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale micelles in solution. The utilization of these structures as targeted drug delivery vehicles has motivated efforts to prepare bioactive ligand-functionalized polymer micelles. The impact of ligand conjugation on micelle morphology was examined through use of well-characterized poly(ethylene oxide)-b-poly(butadiene) (OB) block copolymers functionalized to varying extents with a biologically relevant RGD-containing peptide sequence.
View Article and Find Full Text PDFInterdisciplinary investigation at the interface of chemistry, engineering, and medicine has enabled the development of self-assembled nanomaterials with novel biochemical and electro-optical properties. We have recently shown that emissive polymersomes, polymer vesicles incorporating porphyrin-based fluorophores, feature large integrated-emission oscillator strengths and narrow emission bands; these nanoscale assemblies can be further engineered to fluoresce at discrete wavelengths throughout the visible and near-infrared (NIR) spectral domains. As such, emissive polymersomes effectively define an organic-based family of soft-matter quantum-dot analogs that possess not only impressive optical properties, but also tunable physical and biomaterial characteristics relative to inorganic fluorescent nanoparticles.
View Article and Find Full Text PDF