Publications by authors named "John Zebala"

Background: Relapsed head and neck squamous cell carcinoma (HNSCC) unrelated to HPV infection carries a poor prognosis. Novel approaches are needed to improve the clinical outcome and prolong survival in this patient population which has poor long-term responses to immune checkpoint blockade. This study evaluated the chemokine receptors CXCR1 and CXCR2 as potential novel targets for the treatment of HPV-negative HNSCC.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that activating RhoA in endothelial cells is key for this migration, driven by signals from tumor cells via IL-8 and β integrins.
  • * Blocking RhoA in endothelial cells significantly reduced the ability of breast cancer cells to migrate and metastasize, suggesting that targeting RhoA could be an effective strategy for treating solid tumors.
View Article and Find Full Text PDF

Triple-negative breast carcinoma (TNBC) is one of the most aggressive types of solid-organ cancers. While immune checkpoint blockade (ICB) therapy has significantly improved outcomes in certain types of solid-organ cancers, patients with immunologically cold TNBC are afforded only a modest gain in survival by the addition of ICB to systemic chemotherapy. Thus, it is urgently needed to develop novel effective therapeutic approaches for TNBC.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells.

View Article and Find Full Text PDF

There is an unmet clinical need for stratification of breast lesions as indolent or aggressive to tailor treatment. Here, single-cell transcriptomics and multiparametric imaging applied to a mouse model of breast cancer reveals that the aggressive tumor niche is characterized by an expanded basal-like population, specialization of tumor subpopulations, and mixed-lineage tumor cells potentially serving as a transition state between luminal and basal phenotypes. Despite vast tumor cell-intrinsic differences, aggressive and indolent tumor cells are functionally indistinguishable once isolated from their local niche, suggesting a role for non-tumor collaborators in determining aggressiveness.

View Article and Find Full Text PDF
Article Synopsis
  • SHP2 inhibitors are being tested for their effects on tumors with an overactive RAS/ERK pathway, showing potential to alter the tumor microenvironment by depleting certain macrophages and enhancing lymphocyte infiltration.
  • While SHP2i treatment helps induce certain immune responses, it also leads to an increase in granulocytic myeloid-derived suppressor cells (gMDSCs), which can suppress T cell activity through a pathway involving NFκB and CXCR2 ligands.
  • Combining SHP2 and CXCR1/2 inhibitors demonstrates promise in targeting gMDSCs, promoting effective T cell functions, and improving survival rates in non-small cell lung cancer (NSCLC) models, suggesting a potential strategy for treatment
View Article and Find Full Text PDF

Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor.

View Article and Find Full Text PDF

Background: Despite the success of immune checkpoint blockade therapy in the treatment of certain cancer types, only a small percentage of patients with solid malignancies achieve a durable response. Consequently, there is a need to develop novel approaches that could overcome mechanisms of tumor resistance to checkpoint inhibition. Emerging evidence has implicated the phenomenon of cancer plasticity or acquisition of mesenchymal features by epithelial tumor cells, as an immune resistance mechanism.

View Article and Find Full Text PDF

Tramadol is widely used globally and is the second most prescribed opioid in the United States. It treats moderate to severe pain but lethal opioid-induced respiratory depression is uncommon even in large overdose. It is unknown why tramadol spares respiration.

View Article and Find Full Text PDF

Immune checkpoint inhibitor (ICI) treatment has recently become a first-line therapy for many non-small cell lung cancer (NSCLC) patients. Unfortunately, most NSCLC patients are refractory to ICI monotherapy, and initial attempts to address this issue with secondary therapeutics have proven unsuccessful. To identify entities precluding CD8+ T cell accumulation in this process, we performed unbiased analyses on flow cytometry, gene expression, and multiplexed immunohistochemical data from a NSCLC patient cohort.

View Article and Find Full Text PDF

Purpose: Natural killer (NK)-cell-based immunotherapy may overcome obstacles to effective T-cell-based immunotherapy such as the presence of genomic alterations in IFN response genes and antigen presentation machinery. All immunotherapy approaches may be abrogated by the presence of an immunosuppressive tumor microenvironment present in many solid tumor types, including head and neck squamous cell carcinoma (HNSCC). Here, we studied the role of myeloid-derived suppressor cells (MDSC) in suppressing NK-cell function in HNSCC.

View Article and Find Full Text PDF

Desmetramadol is an investigational analgesic consisting of (+) and (-) enantiomers of the tramadol metabolite O-desmethyltramadol (M1). Tramadol is racemic and exerts analgesia by monoaminergic effects of (-)-tramadol and (-)-M1, and by the opioid (+)-M1. Tramadol labeling indicates cytochrome P450 (CYP) isozyme 2D6 ultrarapid metabolizer can produce dangerous (+)-M1 levels, and CYP2D6 poor metabolizers insufficient (+)-M1 for analgesia.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how a drug called SX-682 can stop certain immune cells (MDSCs) from getting into tumors and help fight cancer better.
  • They found that a type of MDSC, called PMN-MDSCs, was very common in the tumors and made it harder for other immune cells, like T cells, to do their job.
  • Using SX-682 helped reduce the number of PMN-MDSCs in the tumors, which made the T cells work better and could improve treatments for cancer patients.
View Article and Find Full Text PDF

The biological functions and mechanisms of oncogenic KRAS (KRAS) in resistance to immune checkpoint blockade (ICB) therapy are not fully understood. We demonstrate that KRAS represses the expression of interferon regulatory factor 2 (IRF2), which in turn directly represses CXCL3 expression. KRAS-mediated repression of IRF2 results in high expression of CXCL3, which binds to CXCR2 on myeloid-derived suppressor cells and promotes their migration to the tumor microenvironment.

View Article and Find Full Text PDF

A significant fraction of patients with advanced prostate cancer treated with androgen deprivation therapy experience relapse with relentless progression to lethal metastatic castration-resistant prostate cancer (mCRPC). Immune checkpoint blockade using antibodies against cytotoxic-T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1/programmed cell death 1 ligand 1 (PD1/PD-L1) generates durable therapeutic responses in a significant subset of patients across a variety of cancer types. However, mCRPC showed overwhelming de novo resistance to immune checkpoint blockade, motivating a search for targeted therapies that overcome this resistance.

View Article and Find Full Text PDF

The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability.

View Article and Find Full Text PDF

Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively).

View Article and Find Full Text PDF

Background: Options are limited for patients with atopic dermatitis (AD) who do not respond to topical treatments. Antifolate therapy with systemic methotrexate improves the disease, but is associated with adverse effects. The investigational antifolate LD-aminopterin may offer improved safety.

View Article and Find Full Text PDF

The G protein-coupled chemokine receptors CXCR1 and CXCR2 play key roles in inflammatory diseases and carcinogenesis. In inflammation, they activate and recruit polymorphonuclear cells (PMNs) through binding of the chemokines CXCL1 (CXCR1) and CXCL8 (CXCR1 and CXCR2). Structure-activity studies that examined the effect of a novel series of S-substituted 6-mercapto-N-phenyl-nicotinamides on CXCL1-stimulated Ca(2+) flux in whole human PMNs led to the discovery of 2-[5-(4-fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic acid (SX-517), a potent noncompetitive boronic acid CXCR1/2 antagonist.

View Article and Find Full Text PDF

Herein, we report the discovery of a novel DNA probe with a stem-chelate-loop structure, wherein the stability of the probe-target duplex can be modulated lower or higher using a narrow concentration range of dilute transition metal ions (0.1-10 μM). Oligonucleotide probes containing two terpyridine (TPY) ligands separated by 15 bases of single-stranded DNA, with or without a flanking 5 base self-complementary DNA stem, were tested in thermal transition studies with linear target DNA and varying amounts of ZnCl(2).

View Article and Find Full Text PDF

N-[4-[[(2,4-diamino-6-pterdinyl)methyl]amino]benzoyl]-L/D-glutamic acid (L/D-AMT) is an investigational drug in phase 1 clinical development that consists of the L-and D-enantiomers of aminopterin (AMT). L/D-AMT is obtained from a novel process for making the L-enantiomer (L-AMT), a potent oral antiinflammatory agent. The purpose of these studies was to characterize oral uptake and safety in the dog and human of each enantiomer alone and in combination and provide in vitro evidence for a mechanism of intestinal absorption.

View Article and Find Full Text PDF

The chemokine receptors CXCR1/2 are involved in a variety of inflammatory diseases, including chronic obstructive pulmonary disease. Several classes of allosteric small-molecule CXCR1/2 antagonists have been developed. The data presented here describe the cellular pharmacology of the acid and ester forms of the nicotinamide glycolate pharmacophore, a potent antagonist of CXCR2 signaling by the chemokines CXCL1 and CXCL8.

View Article and Find Full Text PDF

Manipulating gene expression in zebrafish is critical for exploiting the full potential of this vertebrate model organism. Morpholino oligos are the most commonly used antisense technology for knocking down gene expression. However, morpholinos suffer from a lack of control over the timing and location of knockdown.

View Article and Find Full Text PDF

Phosphopeptide pTyr-Glu-Glu-Ile (pYEEI) has been introduced as an optimal Src SH2 domain ligand. Peptides, Ac-K(IDA)pYEEIEK(IDA) (1), Ac-KpYEEIEK (2), Ac-K(IDA)pYEEIEK (3), and Ac-KpYEEIEK(IDA) (4), containing 0-2 iminodiacetate (IDA) groups at the N- and C-terminal lysine residues were synthesized and evaluated as the Src SH2 domain binding ligands. Fluorescence polarization assays showed that peptide 1 had a higher binding affinity (K(d) = 0.

View Article and Find Full Text PDF