Unlabelled: Oncogenic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in a wide range of cancers, including acute myeloid leukemia (AML) and glioma. Mutant IDH enzymes convert 2-oxoglutarate (2OG) to (R)-2-hydroxyglutarate [(R)-2HG], an oncometabolite that is hypothesized to promote cellular transformation by dysregulating 2OG-dependent enzymes. The only (R)-2HG target that has been convincingly shown to contribute to transformation by mutant IDH is the myeloid tumor suppressor TET2.
View Article and Find Full Text PDFTen-Eleven-Translocation 5-methylcytosine dioxygenases 1-3 (TET1-3) convert 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), using oxygen as a co-substrate. Contrary to expectations, hypoxia induces 5-hmC gains in -amplified neuroblastoma (NB) cells via upregulation of . Here, we show that MYCN directly controls expression in normoxia, and in hypoxia, HIF-1 augments expression and TET1 protein stability.
View Article and Find Full Text PDFRBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length.
View Article and Find Full Text PDFIn mammalian cells, cytosines found within cytosine guanine dinucleotides can be methylated to 5-methylcytosine (5-mC) by DNA methyltransferases and further oxidized by the Ten-eleven translocation dioxygenase (TET) enzymes to 5-hydroxymethylcytosine (5-hmC). We have previously shown that hematopoietic stem and progenitor cells (HSPCs) with TET2 mutations have aberrant 5-hmC distribution and less erythroid differentiation potential. However, these experiments were performed under standard tissue culture conditions with 21% oxygen (O2), whereas HSPCs in human bone marrow reside in ∼1% O2.
View Article and Find Full Text PDFMitochondrial D2HGDH and L2HGDH catalyze the oxidation of D-2-HG and L-2-HG, respectively, into αKG. This contributes to cellular homeostasis in part by modulating the activity of αKG-dependent dioxygenases. Signals that control the expression/activity of D2HGDH/L2HGDH are presumed to broadly influence physiology and pathology.
View Article and Find Full Text PDFThe TET enzymes are members of the 2-oxoglutarate-dependent dioxygenase family and comprise three isoenzymes in humans: TETs 1-3. These TETs convert 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) in DNA, and high 5-hmC levels are associated with active transcription. The importance of the balance in these modified cytosines is emphasized by the fact that TET2 is mutated in several human cancers, including myeloid malignancies such as acute myeloid leukemia (AML).
View Article and Find Full Text PDFRegulation of the lectin galectin 9 (Gal-9) was investigated for the first time during human cytomegalovirus (HCMV) infection. Gal-9 transcription was significantly upregulated in transplant recipients with reactivated HCMV in vivo. In vitro, Gal-9 was potently upregulated by HCMV independently of viral gene expression, with interferon beta (IFN-β) identified as the mediator of this effect.
View Article and Find Full Text PDFSeveral human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets.
View Article and Find Full Text PDFThe human cytomegalovirus UL111A gene is expressed during latent and productive infections, and it codes for homologs of interleukin-10 (IL-10). We examined whether viral IL-10 expressed during latency altered differentiation of latently infected myeloid progenitors. In comparison to infection with parental virus or mock infection, latent infection with a virus in which the gene encoding viral IL-10 has been deleted upregulated cytokines associated with dendritic cell (DC) formation and increased the proportion of myeloid DCs.
View Article and Find Full Text PDFThe human cytomegalovirus (HCMV) ORF94 gene product has been reported to be expressed during both productive and latent phases of infection, although its function is unknown. We report that expression of pORF94 leads to decreased 2',5'-oligoadenylate synthetase (OAS) expression in transfected cells with and without interferon stimulation. Furthermore, the functional activity of OAS was inhibited by pORF94.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a clinically important and ubiquitous herpesvirus. Following primary productive infection the virus is not completely eliminated from the host, but instead establishes a lifelong latent infection without detectable virus production, from where it can reactivate at a later stage to generate new infectious virus. Reactivated HCMV often results in life-threatening disease in immunocompromised individuals, particularly allogeneic stem cell and solid organ transplant recipients, where it remains one of the most difficult opportunistic pathogens that complicate the care of these patients.
View Article and Find Full Text PDFInitiation of human cytomegalovirus (HCMV) productive infection is dependent on the major immediate early (MIE) genes ie1 and ie2. Several putative binding sites for CCAAT displacement protein (CDP or CUX1) were identified within the MIE promoter/regulatory region. Binding assays demonstrated binding of CUX1 to MIE-region oligonucleotides containing the CUX1 core binding sequence ATCGAT and mutagenesis of this sequence abrogated CUX1 binding.
View Article and Find Full Text PDF